
天主教輔仁大學圖書資訊學系碩士班

指導老師：李正吉 博士

雲端儲存服務之資訊安全研究

The Study on Information Security for

Cloud Storage Service

研究生：邱詩婷 撰

中國民國 103年 12月

i

i

誌謝 (ACKNOWLEDGEMENTS)

首先必須感謝我的指導教授李正吉老師在這兩年多在研究方面的指導，不僅

僅是給予我研究的方向，也指導我論文撰寫以及做研究的技巧。謝謝我的兩位口

試教授：謝建成老師以及李俊達老師，兩位老師給予的意見讓我的論文更加完整。

謝謝彥銘和哲維兩位學長在研究上給予我的幫忙，學長們不厭其煩的解決我

的疑問，也讓我從他們身上學到許多研究的技巧。在這兩年多也很感謝圖資所

401級的同學們，彼此的互相鼓勵也增添了些許動力。謝謝 LE504 的夥伴們，謝

謝姿潁、彥宏這段時間和我彼此監督進度，也謝謝心怡學妹給予的關心。除了感

謝輔大圖資所的同學們之外，亦要感謝陪伴在我身邊的朋友們，謝謝鄭婷總是在

我英文文法或是單字有問題的時候給予我指導，沒有這些同學以及朋友的陪伴，

這段日子必定會枯燥乏味又艱辛，論文也不會如期完成。

最後要感謝一直在我背後支持我的父母，沒有他們的支持、支援與肯定，我

是沒有辦法如期完成這論文以及學業。

謝謝大家

ii

中文摘要

隨著網際網路日漸發展與成長，許多的應用相應而生，而近幾年受到矚目的

便是雲端運算。由於他強大的架構方式以及運算能力，使得各種應用相應而生，

雲端儲存服務便為其中一項。回歸雲端運算的本質，其依舊需要倚靠網路進行資

料的傳輸，而在這傳輸的過程中並非完全安全，例如在傳輸的過程中，非法使用

者攔截重要的資訊、偽造合法使用者的身分進行通訊或是偽造密文等。因此，如

何確保使用者在使用雲端儲存服務時能夠保有隱私並正確的儲存及接受資訊是

個重要的議題。在近幾年研究中，許多學者研究如何讓使用者更方便的使用雲端

儲存環境並且讓資料更安全的被傳輸以及儲存，例如：基於 ID(identity)的金

鑰管理方案、階層式基於屬性的加密方案、隱私維護的稱謂語加密方案、隱私維

護的關鍵字搜尋方案等。這些方法提供使用者安全及便利的雲端儲存環境，不但

保障了資訊與使用者的隱私外，也減輕了使用者的負擔。

在本論文中，我們將分析近幾年應用於雲端儲存服務的研究，包含了關鍵

字搜尋、代理重新加密及以屬性為基礎的資料加密等，並基於雙線性映射函數

的數學原理上提出新的方法。根據安全性與特性的分析，我們的方法比過去的

研究更為安全且更能應用於實際環境中。

關鍵字：雲端運算、雲端儲存、關鍵字搜尋、雙線性映射函數、時效性

iii

ABSTRACT

With the progression and growth of Internet, many applications have been

developing based on Internet. The most popular application is cloud computing.

Because of its strong architectural and high computing performance, many applications

have been developing and cloud storage service is one of them. Back the essence of

cloud computing, it still to rely on the Internet to transfer the data. It is not secure during

the procedure of transfer data, for example: the attacker will intercept the important

information during the procedure, forge identity of legitimate users to join

communication or forge the ciphertext. Therefore, how to ensure the privacy of the user

and access the data correctly in cloud storage service is an important issue. In recent

years, many researchers focus on how to use the cloud storage service more secure and

convenient for the data and the user, for example, identity-based key management,

hierarchical attribute-based encryption scheme, and controllable privacy preserving

search based on symmetric predicate encryption etc. These schemes provide the secure

and convenient cloud storage environment for the user, it not only guarantee the privacy

of data and user, but also reduce the burden for user.

In this study, we will analyze the researches of recent years which applied to cloud

storage services, and these researches contain the keyword search scheme, proxy re-

encryption scheme and attribute-based encryption. Based on bilinear pairing, we

present some new schemes. According to the analyses of security and properties, our

method is more secure than previous researches and more flexible in a practical

environment.

Keywords: Cloud computing, Cloud storage, Keyword search, Bilinear pairing, Time-

bound

iv

TABLE OF CONTENTS

誌謝 (ACKNOWLEDGEMENTS) .. i

中文摘要……….ii

ABSTRACT .. iii

TABLE OF CONTENTS ... iv

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

Chapter 1 Introduction .. 1

 1.1 Research Motivation ... 1

 1.2 Research Subject .. 4

 1.3 Thesis Organization .. 5

Chapter 2 Public Key Encryption Scheme with Keyword Search 6

 2.1 Preliminaries .. 6

 2.2 Related Works .. 11

 2.3 New Scheme .. 14

 2.4 Security and Performance Analysis... 19

Chapter 3 Hierarchical Conditional Proxy Re-encryption Scheme 26

 3.1 Preliminaries .. 27

 3.2 Related Works .. 30

 3.3 Review Weng et al.’s Scheme ... 33

 3.4 New Scheme .. 36

 3.5 Security and Function Analysis... 43

Chapter 4 Key-aggregate Encryption .. 52

 4.1 Preliminaries .. 53

v

 4.2 Related Works .. 57

 4.3 Time-bound Key-aggregate Encryption .. 60

 4.4 Security and Performance Analysis... 66

Chapter 5 Conclusions .. 75

References…………..………………………………………………………………..77

vi

LIST OF TABLES

Table 1 Notations used in the proposed trapdoor-indistinguishable PEKS 17

Table 2 Security comparison among related schemes 19

Table 3 Performance comparison among related schemes 21

Table 4 Notations used in searchable hierarchical conditional PRE 40

Table 5 Function comparison of our scheme and other schemes 44

Table 6 Performance comparison of our scheme and other schemes 45

Table 7 Notations in time-bound key-aggregate encryption 63

Table 8 Comparison results among related works ... 72

vii

LIST OF FIGURES

Figure 1 PEKS without data owner authentication ... 10

Figure 2 The proposed trapdoor-indistinguishable PEKS 16

Figure 3 Hierarchical conditional proxy re-encryption 35

Figure 4 Searchable hierarchical conditional proxy re-encryption 39

Figure 5 How traditional attribute-based encryption works 55

Figure 6 Key-aggregate encryption .. 57

Figure 7 The relationship of 𝑇, 𝜆, 𝑥, 𝑦, 𝑡, 𝑡1, and 𝑡2.. 63

Figure 8 Time-bound key-aggregate encryption scheme 66

file:///C:/Users/。SHI/Desktop/碩論初稿.docx%23_Toc405399938
file:///C:/Users/。SHI/Desktop/碩論初稿.docx%23_Toc405399939
file:///C:/Users/。SHI/Desktop/碩論初稿.docx%23_Toc405399940
file:///C:/Users/。SHI/Desktop/碩論初稿.docx%23_Toc405399941
file:///C:/Users/。SHI/Desktop/碩論初稿.docx%23_Toc405399942
file:///C:/Users/。SHI/Desktop/碩論初稿.docx%23_Toc405399943
file:///C:/Users/。SHI/Desktop/碩論初稿.docx%23_Toc405399944
file:///C:/Users/。SHI/Desktop/碩論初稿.docx%23_Toc405399945

1

Chapter 1 Introduction

1.1 Research Motivation

Technology grows so as to satisfy our needs, and our everyday behavior patterns

are shaped by the growth of technology. This applies to people’s habit of data storage.

Not long ago, people were still keeping their data in flash drives and portable hard

drives, enjoying the convenience those “advanced” handy little devices brought rather

than storing everything in the computer itself. Nowadays, with the rapid development

of cloud computing technologies, many yet more advanced applications have begun to

surface, cloud storage service among the rest. According to Wikipedia, cloud storage

can be defined as a model of data storage where the digital data is stored in logical pools,

the physical storage can usually span multiple servers, and the physical environment is

typically owned and managed by a hosting company. The cloud storage service provider

has the responsibility of keeping the data available and accessible to the client at any

time and securing the data stored in the cloud against any form of attack. So, speaking

of data storage, instead of flash drives and portable hard drives, more and more people

now will think of cloud storage services such as Dropbox, SkyDrive, and MEGA. With

everything saved in the cloud, people can readily access their data anytime and

anywhere using any device as long as that device gets online. However, as far as data

security is concerned, Edward Snowden pointed out that popular consumer Internet

services like Dropbox are “hostile to privacy”. As more and more sensitive data are

trusted to cloud storage, information security becomes a bigger and bigger issue. Or, to

put it another way, whichever cloud storage service provider can offer a better solution

to the data security problem will surely have a huge advantage over others because

2

cloud storage users will not trust their sensitive data to a service provider otherwise.

Indeed, cloud data security, privacy, and confidentiality protection has become a

major focus of research [1]. In 2010, Wang et al. [66] and Yu et al. [76] exploited the

concept of attribute-based encryption and proposed a high performance fine access

control scheme with collusion resistance and a fine-grained, scalable data access control

scheme with data confidentiality for cloud computing, respectively. Then in 2011

Huang et al. proposed an efficient identity-based key management scheme for

configurable hierarchical cloud environment that offers high performance at low

communication costs on encryption [32].

On the other hand, with tons and tons of data stored in the cloud, how the user can

have easy access to some specific data desired is also a major concern. In the past, there

used to be two ways to retrieve the desired data from the cloud [23]. The first and most

straightforward way was for the user to download everything stored in the cloud and

then decrypt all the data and then search the whole thing for the part or parts of data

desired. The second way was for the user to send a secret key to the cloud server, who

then could use that secret key to decrypt and find the desired data for the user.

Unfortunately, just as it sounds, the first way is a lot of trouble for the user. As for the

second, it is nothing better because serious security problems can arise given that there

is always a possibility that the cloud server, now holding the user’s secret key, is a

malicious server ready to do something evil.

Keyword search is a solution to the above problems. The concept of keyword

search through encrypted data was proposed by Song et al. in 2000 [59]. In a keyword

search scheme, people can use a keyword to search through encrypted data and find the

part or parts of data previously encrypted by using that keyword. This way, no

information will leak out during the keyword search process, and the downloading and

3

decryption will only involve the part or parts the user wishes to access. So far, quite a

lot of research endeavors have been devoted to the development of cloud storage

keyword search technologies [14, 26, 28, 33, 49, 54]. In 2004, Boneh et al. [7] proposed

a scheme called public key encryption with keyword search (PEKS). Then, in 2008,

Baek et al. extended Boneh et al.’s PEKS into a secure channel-free public key

encryption scheme with keyword search (SCF-PEKS) [2] where the secure channel

between the server and the user is removed to reduce the cost. After these studies,

researchers have been working on different keyword search mechanisms. For example,

in 2009, Liu et al. [43] offered an efficient privacy-preserving keyword search scheme

(EPPKS) that can be viewed as an improved version of PEKS. Then, in 2011, Li et al.

proposed another type of keyword search called fuzzy keyword search [41]. In 2012,

Liu et al. [44] improved Liu et al.’s EPPKS [43] into a secure, privacy-preserving

keyword search (SPKS) scheme. In the meanwhile, Zhao et al. [77] also proposed a

new efficient trapdoor-indistinguishable public key encryption scheme with keyword

search which does not require a secure channel between the receiver and the server,

where the trapdoor is updated and kept fresh for every session. For cases where the data

owner wishes to put some limits to the user’s time of data access, issuing a time-bound

key to the user is a good way. In 2014, Liu et al. combined the concept of attribute-

based encryption and time-based key to create a time-based proxy re-encryption scheme

for data sharing in cloud environments [45]. In this paper, we shall propose three new

schemes to satisfy all the requirements raised up in the scenarios mentioned above with

security issues such as data confidentiality, privacy, integrity, and authority well taken

care of.

4

1.2 Research Subject

This study did not only focus on data confidentiality, privacy protection, and data

integrity maintenance in cloud storage environments but also aimed to make the cloud

data access process more user-friendly. The first scheme we shall propose in this thesis

is a secure trapdoor-indistinguishable public encryption scheme with keyword search.

The trapdoor-indistinguishability property means if the user sends the trapdoor of a

certain keyword to the CSP multiple times, the trapdoor is updated and thus kept fresh

every time when the user sends the requirement. In 2012, Zhao et al. proposed a new

efficient trapdoor-indistinguishable public key encryption scheme with keyword search

that does not require a secure channel between the receiver and the server. Although

Zhao et al.'s scheme can satisfy such security requirements as user authentication and

authorized identity protection, it fails to keep the CSP from storing fake ciphertexts. In

other words, if the CSP didn't verify the identity of the data owner and thus stored a

fake ciphertext, it cannot later search for the data the user wants.

The second scheme is a searchable hierarchical conditional proxy re-encryption

scheme. In Weng et al.’s conditional proxy re-encryption scheme [72], the data owner

can assign which ciphertext satisfies a certain keyword condition set, and the semi-

trusted proxy server can do re-encryption. It is true that Weng et al.’s ideas are very

helpful in handling the huge amounts of data in cloud environments; however, in reality,

their scheme fails in both encrypted data searching and conditional proxy re-encryption.

Inspired by Fang et al. [24], we shall propose a searchable hierarchical conditional

proxy re-encryption scheme we have created that combines keyword search and

conditional proxy re-encryption.

The third scheme we shall propose in this thesis is a time-bound key-aggregate

encryption scheme. Handling huge loads of data that are subject to change at any time,

5

cloud storage services are facing the challenge of properly dealing with the problem of

user legality management while making sure that the services provided are conveniently

user-friendly. Chu et al. [19] proposed a scheme called Key-Aggregate Cryptosystem

(KAC). Distinct form typical attribute-based encryption schemes, in Chu et al.’s scheme,

the user can use one aggregate key to decrypt data of all the attributes specified. This is

a very convenient design for the user. Besides that, there are cases where the data owner

does not want the data stored in the cloud to be open for access all the time, and this is

when the concept of time control comes in. Inspired by Chu et al.’s scheme, we have

created a new scheme that combines the concept of key-aggregate cryptosystem and

the use of time-bound key. Our third new scheme is not only extremely user-friendly

but also guarantees data security.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we will

introduce Zhao et al.’s trapdoor-indistinguishable public key encryption scheme with

keyword search, followed by our improved version of the scheme. Then, in Chapter 3,

we will present our new scheme that combines keyword search and conditional proxy

re-encryption for cloud storage. In Chapter 4, we will detail our time-bound key-

aggregate encryption scheme for cloud storage service. Finally, the conclusion will be

in Chapter 5.

6

Chapter 2 Public Key Encryption

Scheme with Keyword Search

Cloud storage allows users to easily access their data in cloud anytime and

anywhere by using any device that can get online, such as a wireless PDA, a smartphone,

or a notebook computer. Nevertheless, how can we make sure that this simple access to

cloud storage comes at a satisfactory security level? Keyword search with data

encryption seems to be a good answer. In 2012, Zhao et al. proposed a trapdoor-

indistinguishable public key encryption scheme with keyword search to be applied to

the field of cloud storage service. However, we found a weakness in Zhao et al.’s

scheme. In this paper, we shall point out the weakness and offer an improved version

of trapdoor-indistinguishable public key encryption with keyword search for cloud

environments. In our improved scheme, we make the keyword trapdoor

indistinguishable while protecting the PEKS ciphertext against forgery attacks.

Compared with other PEKS schemes, our new design is not only more efficient but

gives better performance in terms of correctness and security.

2.1 Preliminaries

Cloud computing refers to both the applications delivered as services over the

Internet and the hardware as well as systems software in the data centers that provide

those services [68]. Cloud storage is one of the most popular applications served by the

cloud. Nowadays, more and more people and businesses keep their data in the cloud.

Thanks to the cloud storage service, with a tiny, lightweight device such as a wireless

PDA, smartphone or notebook in their hands, users can readily access their data anytime

7

and anywhere. As cloud storage technologies advance, the security of the data stored in

cloud environments becomes a more and more important issue. To keep any malicious

party from accessing and making use of the data stored in the cloud, data owners often

need to encrypt the data before uploading them to the cloud server. In that case, when

a legal user wishes to access the data stored in the cloud, he/she will have to download

the data as a whole instead of picking out and downloading only the relevant part or

parts. For example, let’s suppose both Alice and Bob are legal users of some specific

data. Alice stored the data in the cloud, and Bob wants to access some information about

“computer”. Bob has no choice but to download all the data stored in the cloud before

he can sort out the parts of the data that are actually related to “computer”. The

downloading of the whole pack of data can be a real waste of time and resources

especially when the data stored in the cloud are in very large quantities while only very

small portions of them need to be accessed. To retrieve only the part or parts of the data

that the user really needs, keyword search seems to be a good solution.

However, if the uploaded data in the cloud has been encrypted by the data owner,

then how can we make keyword search work? In 2000, Song et al. [59] proposed a

secure keyword search scheme using a symmetric cipher. In 2004, in their well-

celebrated article entitled “Public Key Encryption with Keyword Search”, Boneh et al.

[6] went a step further and offered a scheme later often referred to as PEKS. Boneh et

al.’s PEKS scheme has a secure channel between the cloud server and the user. In 2008,

in order to reduce the cost, Baek et al. extended Boneh et al.’s PEKS scheme into a

secure-channel-free public key encryption scheme with keyword search (SCF-PEKS)

[2]. However, in 2009, Rhee et al. pointed out that Baek et al.’s SCF-PEKS was

vulnerable to the keyword guessing attack [51], and so they proposed the concept of

trapdoor indistinguishability [52]. On the other hand, Liu et al. proposed an efficient

8

privacy-preserving keyword search scheme (EPPKS) [43] which improved the

performance of PEKS. Meanwhile, in 2010, Li et al. [41] proposed a fuzzy keyword

search scheme based on keyword similarity semantics capable of responding with the

closest possible matching files. In 2012, Liu et al. [44] improved their earlier work

EPPKS [43] and proposed a secure and privacy-preserving keyword search (SPKS)

scheme. Besides, Zhao et al. [77] also proposed a trapdoor-indistinguishable public key

encryption scheme with keyword search that does not require a secure channel between

the receiver and the server. In addition to the researches mentioned above, quite a

number of studies can be found in the literature concerned that focus on the quest for

PEKS and keyword search with high efficiency and security [14, 26, 28, 31, 33, 39, 49,

54].

Although PEKS schemes do enable users to get to the data they wish to access,

how to make that happen in cloud environments with privacy fully protected is an

important research issue. In 2013, Hsu et al. [31] made a list of some security

requirements to be met in cloud computing environments as follows:

1. User authentication

The CSP (Cloud Service Provider) needs to confirm that the trapdoor of the

keyword is sent from the authorized user and no one can discover the

authorized user’s real identity except for the CSP.

2. Authentication of data owner

When the CSP receives the ciphertext from the data owner, in order to avoid

having fake ciphertext stored, the CSP needs to authenticate that the ciphertext

is sent from the real data owner.

9

3. Protection of authorized identity

In case an attacker has the trapdoor ciphertext intercepted on the way from the

data owner to the CSP, the attacker cannot derive the user’s identity from the

intercepted trapdoor ciphertext.

4. Trapdoor indistinguishability

Due to the fact that the trapdoor ciphertext is sent via a public channel, an

attacker may intercept the trapdoor ciphertext and try to figure out the real

keyword. Trapdoor indistinguishability is the kind of protection that ensures

no malicious attacker can obtain the information hidden in the trapdoor

ciphertext by analyzing the trapdoor ciphertext.

5. Resistance to keyword-guessing attack

The trapdoor is frequently updated, and that is why it is said to be

indistinguishable. With the trapdoor collected, an attacker still cannot

offline/online guess the real keyword from the trapdoor.

The PEKS schemes currently available can indeed provide user authentication and

identity protection. However, there is not a mechanism to keep the CSP from storing

fake ciphertext. Figure 1 shows a scenario where the data owner intends to send the

data’s ciphertext and PEKS ciphertext to the CSP, but both pieces of ciphertext get

intercepted by an attacker. The attacker then sends some fake ciphertext to the CSP.

When receiving the fake ciphertext, without verifying the validity of the data owner,

the CSP stores them as always so that the data can be searched and retrieved by users.

Later on, when a legal user needs to access some data which can be directed to by a

certain keyword, he/she creates a trapdoor for that keyword and sends it to the CSP.

Since the CSP stored the wrong ciphertext, the server fails to retrieve the correct data.

Finally, the user cannot get the due ciphertext to decrypt.

10

To mend this flaw, in this Section, we propose a secure trapdoor-indistinguishable

public key encryption scheme with keyword search for cloud storage that satisfies the

following requirements:

1. There is no need for a secure channel between the cloud user and the cloud

service provider (CSP). In other words, the trapdoor can be sent via a public

channel.

2. The trapdoor is indistinguishable. Even though an attacker can intercept the

trapdoor, he/she still has no way to derive the real keyword by analyzing the

trapdoor.

3. Store fake ciphertext

Authenticated user Data owner

2. Send fake ciphertext

1. Send ciphertext

4. Send trapdoor of

keyword

5. Reject requirement due

to keyword matching

failure

CSP Attacker

Figure 1 PEKS without data owner authentication

11

3. The CSP can search through the ciphertext for keywords. The CSP can check

whether or not the data contains certain keywords specified by the user without

knowing the keywords and the content of the data.

4. The CSP can verify whether the PEKS ciphertext is sent from the data owner

and thereby avoid the forgery attack.

2.2 Related Works

In this section, we will quickly introduce the bilinear pairing technique [7] as well

as some complexity assumptions and review the trapdoor-indistinguishable public key

encryption scheme with keyword search (TI-PEKS) by Zhao et al. [77].

2.2.1 Bilinear Pairing

Let 𝔾1 be a cyclic additive group with prime order 𝑞 and 𝔾2 be a cyclic

multiplicative group with prime order 𝑞, and suppose 𝑃 is the generator of group 𝔾1.

With 𝑥, 𝑦 ∈ ℤ𝑞 and bilinear map 𝑒: 𝔾1 × 𝔾1 → 𝔾2 , there are some properties as

follows:

 Bilinearity: For all 𝑥, 𝑦 ∈ ℤ𝑞 and 𝑅, 𝑄 ∈ 𝔾1, 𝑒(𝑥𝑅, 𝑦𝑄) = 𝑒(𝑅, 𝑄)𝑥𝑦.

 Computability: For any 𝑅, 𝑄 ∈ 𝔾1 , there exists an efficient algorithm to

compute 𝑒(𝑅, 𝑄) ∈ 𝔾2.

 Non-degeneration: 𝑒(𝑅, 𝑄) ≠ 1.

12

2.2.2 Complexity Assumptions

Some complex problems can be created out of 𝔾1 as follows:

 Discrete Logarithm Problem (DLP)

Given two elements 𝑅 and 𝑄 in 𝔾1, it is difficult to find 𝑛 ∈ ℤ𝑞 such that

𝑅 = 𝑛𝑄 if 𝑛 exists.

 Computation Diffie-Hellman Problem (CDHP)

Given 𝑅, 𝑥𝑅, 𝑦𝑅 for 𝑥, 𝑦 ∈ ℤ𝑞 , it is difficult to compute 𝑥𝑦𝑅.

 Bilinear Diffie-Hellman Problem (BDHP)

Given 𝑅, 𝑅𝑥 , 𝑅𝑦 , 𝑅𝑧 for 𝑥, 𝑦, 𝑧 ∈ ℤ𝑞 , it is difficult to compute 𝑒(𝑅, 𝑅)𝑥𝑦𝑧 ∈

𝔾2.

2.2.3 Trapdoor-indistinguishable Public Key Encryption

with Keyword Search

In this subsection, we will review Zhao et al.’s trapdoor-indistinguishable public

key encryption scheme with keyword search. In Zhao et al.’s TI-PEKS, there are three

parties involved, namely the sender, the server, and the receiver. The scheme contains

six algorithms as follows:

 𝐾𝑒𝑦𝐺𝑒𝑛𝑃𝑎𝑟𝑎𝑚(𝑘): A common parameter generation algorithm. With a

security parameter 𝑘 ∈ ℕ entered, the algorithm outputs the system’s

common parameters 𝑐𝑝.

13

 𝐾𝑒𝑦𝐺𝑒𝑛𝑆𝑒𝑟𝑣𝑒𝑟(𝑐𝑝): The public/private key generation algorithm for the

server. It takes in the common parameters 𝑐𝑝 and outputs the public key

𝑝𝑘𝑆 and the private key 𝑠𝑘𝑆 for the server.

 𝐾𝑒𝑦𝐺𝑒𝑛𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟(𝑐𝑝): The public/private key generation algorithm for the

receiver. With the common parameters 𝑐𝑝 taken in, the algorithm outputs

the public key 𝑝𝑘𝑅 and the private key 𝑠𝑘𝑅 for the receiver.

 𝑃𝐸𝐾𝑆(𝑐𝑝, 𝑝𝑘𝑆, 𝑝𝑘𝑅, 𝑤): The generation algorithm of the ciphertext’s PEKS

𝑅 . The data owner inputs the system’s common parameters 𝑐𝑝, server’s

public key 𝑝𝑘𝑆, receiver’s public key 𝑝𝑘𝑅 , as well as the keyword 𝑤, and

then the algorithm outputs the ciphertext’s PEKS 𝑅 that is searchable.

 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑐𝑝, 𝑠𝑘𝑅, 𝑤): The trapdoor generation algorithm. The receiver

inputs the system’s common parameters 𝑐𝑝, his/her private key 𝑠𝑘𝑅, as well

as the keyword 𝑤, and then the algorithm generates the trapdoor 𝑇𝑊 of the

keyword 𝑤.

 𝑇𝑒𝑠𝑡(𝑐𝑝, 𝑇𝑊, 𝑠𝑘𝑆, 𝑅): The keyword test algorithm. Input the system’s

common parameters 𝑐𝑝, the server’s public key 𝑠𝑘𝑆, the ciphertext’s PEKS

𝑅 and the trapdoor 𝑇𝑊 of the keyword 𝑤, and the algorithm will return

“correct” if 𝑤′ = 𝑤 and “incorrect” otherwise.

14

2.3 New Scheme

In this section, we shall first illustrate the architecture of our propoesd TI-PEKS

scheme and then give the details of each step.

2.3.1 Process

In our improved scheme, there are 8 steps to take, namely system parameter

generation, key generation for cloud service provider (CSP), key generation for user,

key generation for data owner, PEKS ciphertext generation, ciphertext verification,

keyword trapdoor generation, and search. Three participants are involved, including the

data owner, who generates the data’s ciphertext and PEKS ciphertext and sends them

to the CSP; the CSP, who provides the storage, stores the data and searches the data for

the specific parts that the user requests; and the user, who wishes to retrieve certain

parts of the data that contain a specific keyword and therefore sends the keyword’s

trapdoor to the CSP. Figure 2 is the flowchart of our scheme with the purpose each step

serves specified:

 𝐾𝑒𝑦𝐺𝑒𝑛𝑃𝑎𝑟𝑎𝑚: In this step, some security parameters will be input to the

system, and the system will output the common parameters.

 𝐾𝑒𝑦𝐺𝑒𝑛𝐶𝑆𝑃 : With the public parameter taken in as input, the system outputs

the CSP’s public key and private key.

 𝐾𝑒𝑦𝐺𝑒𝑛𝑈𝑠𝑒𝑟 : With the public parameter and the user’s identity entered as

input, the system outputs the user’s public key and private key.

15

 𝐾𝑒𝑦𝐺𝑒𝑛𝐷𝑎𝑡𝑎 𝑜𝑤𝑛𝑒𝑟: Taking in the public parameter and the data owner’s

identity as input, the system outputs the data owner’s public key and private

key.

 𝑃𝐸𝐾𝑆: With the data encrypted, the data owner uses the common parameters

and the user’s public key to generate the keyword 𝑤’s PEKS ciphertext. In

addition, the data owner uses his/her private key to generate the verification

message and sends the data’s ciphertext, PEKS ciphertext and verification

message to the CSP.

 𝑉𝑒𝑟𝑖𝑓𝑦: Upon receiving the encrypted data, the CSP uses the data owner’s

public key to verify whether the ciphertexts were actually sent by the data

owner. If yes, the CSP stores the data; otherwise, the ciphertexts are rejected.

 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟: When the user wants to retrieve some parts of the data that

contain a certain keyword, he/she uses his/her private key and the CSP’s

public key to generate the keyword’s trapdoor and sends it to the CSP.

 𝑇𝑒𝑠𝑡: Upon retrieving the trapdoor, the CSP uses his/her private key and the

user’s public key to check whether the trapdoor is equal to the PEKS

ciphertext sent from the data owner. If positive, the CSP sends the ciphertext

to the user; otherwise, the CSP denies the request.

16

2.3.2 The Proposed Scheme

First of all, Table 1 lists the notations that will be used throughout our scheme.

Then, each step that is to be taken in the scheme will be detailed.

1. Send ciphertext

2. Verify and store

ciphertext

CSP

Data owner Authenticated user

3. Send trapdoor of

keyword

4. Search with keyword

and send due parts of

ciphertext

Figure 2 The proposed trapdoor-indistinguishable PEKS

17

Table 1 Notations used in the proposed trapdoor-indistinguishable PEKS

Notations Descriptions

𝑘

𝐼𝐷𝑂

𝐼𝐷𝑈

𝑝𝑘𝑠 , 𝑠𝑘𝑠

𝑝𝑘𝑂 , 𝑠𝑘𝑂

𝑝𝑘𝑈 , 𝑠𝑘𝑈

𝑤

⨁

Security parameter, 𝑘 ∈ ℕ

Identity of data owner

Identity of user

Public key and private key of CSP

Public key and private key of data owner

Public key and private key of CSP

Keyword

XOR operation

 𝐾𝑒𝑦𝐺𝑒𝑛𝑃𝑎𝑟𝑎𝑚: With a security parameter 𝑘 ∈ ℕ input, the system

generates a group 𝔾1 of prime order 𝑞 ≥ 2𝑘 , a random generator 𝑃 of

𝔾1, and a bilinear map 𝑒: 𝔾1 × 𝔾1 → 𝔾2. Three hash functions are produced,

namely 𝐻0: {0, 1}∗ → 𝑍 , 𝐻1: {0, 1}∗ → 𝔾1 and 𝐻2: 𝔾2 → {0, 1}𝑘 . In

addition, 𝑑𝑤 denotes a description of the keyword space, and the common

parameters are 𝑐𝑝 = (𝑞, 𝔾1, 𝔾2, 𝑒, 𝑃, 𝐻0, 𝐻1, 𝐻2, 𝑑𝑤).

 𝐾𝑒𝑦𝐺𝑒𝑛𝑆𝑒𝑟𝑣𝑒𝑟: Input the common parameters 𝑐𝑝, choose a random number

𝑥 ∈ ℤ𝑞
∗ and 𝑄 ∈ 𝔾1

∗ , and compute 𝑋 = 𝑥𝑃. Output the server’s public key

𝑝𝑘𝑠 = (𝑐𝑝, 𝑄, 𝑋) and private key 𝑠𝑘𝑠 = 𝑥.

 𝐾𝑒𝑦𝐺𝑒𝑛𝑈𝑠𝑒𝑟 : The CSP inputs the common parameters 𝑐𝑝 and the user’s

identity 𝐼𝐷𝑈 . Then the CSP computes 𝑌 = 𝐻0(𝐼𝐷𝑈)𝑃 and 𝑦 = 𝑥𝑌 and

sends the public key 𝑝𝑘𝑈 = (𝑐𝑝, 𝑌) and private key 𝑠𝑘𝑈 = 𝑦 to the user.

18

 𝐾𝑒𝑦𝐺𝑒𝑛𝐷𝑎𝑡𝑎 𝑜𝑤𝑛𝑒𝑟: The CSP inputs the common parameters 𝑐𝑝 and the

data owner’s identity 𝐼𝐷𝑂 . Then the CSP computes 𝐴 = 𝐻0(𝐼𝐷𝑂)𝑃 and

𝑎 = 𝑥𝐴 and sends the public key 𝑝𝑘𝑂 = (𝑐𝑝, 𝐴) and private key 𝑠𝑘𝑂 = 𝑎

to the data owner.

 𝑃𝐸𝐾𝑆: The data owner inputs 𝑐𝑝, 𝑝𝑘𝑆, 𝑝𝑘𝑈, 𝑠𝑘𝑂, 𝑤, and 𝐴 and chooses a

random number 𝑟 ∈ ℤ𝑞
∗ . Then the data owner computes R as PEKS

ciphertext, where 𝑅 = (𝑈, 𝑉, 𝑡, 𝑉𝑂) , 𝑈 = 𝑟𝑃, 𝑉 = 𝑟𝐴 , 𝑡 =

𝑒(𝐻1(𝑤), 𝑈)𝑒(𝑟𝑄, 𝑋) , 𝑉𝑂 = 𝐻1(𝑡)⨁𝐻1(𝛼) and 𝛼 = 𝑒(𝑄, 𝑟𝑎) . The data

owner sends 𝑅 and the data’s ciphertext to the CSP.

 𝑉𝑒𝑟𝑖𝑓𝑦: Upon receiving the data, the CSP inputs 𝑝𝑘𝑆, 𝑝𝑘𝑂, 𝑉𝑂 , and 𝑉 and

computes 𝑉𝑂
′ = 𝐻1(𝑡) ⨁𝐻1(𝑒(𝑥𝑄, 𝑉)) . The CSP checks whether 𝑉𝑂

′ is

equal to 𝑉𝑂 or not. If yes, the CSP stores the received data; otherwise, the

CSP rejects the ciphertext.

 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟: The user inputs 𝑐𝑝, 𝑠𝑘𝑅, 𝑤 and 𝑌 and chooses a random

number �̃� ∈ {0,1}∗. Then the user computes 𝑇𝑤1 = [𝑦−1𝐻1(𝑤) + 𝐻1(�̃�)]

⨁[𝐻1(𝑒(𝑄, �̃�𝑦))] and 𝑇𝑤2 = 𝑦𝐻1(�̃�) ∈ 𝔾1 and returns 𝑇𝑊 and �̃� 𝑌 ,

where 𝑇𝑊 = (𝑇𝑤1, 𝑇𝑤2), as a trapdoor for the keyword 𝑤.

 𝑇𝑒𝑠𝑡: The CSP inputs 𝑐𝑝, 𝑇𝑊, 𝑠𝑘𝑆, 𝑅, and �̃� 𝑌 and computes 𝑇𝑤 =

𝑇𝑤1⨁𝐻1(𝑒(𝑥𝑄, �̃�𝑌)), 𝑆 = 𝑒(𝑇𝑤2, 𝑈), 𝑡′ = 𝑒(𝑥𝑄, 𝑈)−1 and 𝑇 = 𝑡𝑡′ =

𝑒(𝐻1(𝑤), 𝑈). If 𝐻2(𝑒(𝑇𝑤 , 𝑉)) = 𝐻2(𝑇 ⋅ 𝑆), it returns “Correct”; otherwise,

it returns “Incorrect”.

19

2.4 Security and Performance Analysis

In this section, we shall show how our improved PEKS scheme compares with

Boneh et al.’s [6], Beak et al.’s [2], Liu et al.’s [44], Rhee et al.’s [52], and Zhao et al.’s

[77] in terms of security and performance. Then there will be a BAN logic [11, 72]

correctness verification of the proposed scheme, followed by a security analysis.

2.4.1 Comparison

To begin with, let’s evaluate the security of the proposed scheme by comparing it

with a number of related schemes. Table 2 shows the comparison results, where

abbreviations User Auth, Owner Auth, AuthID Pro, Trap Ind and KW Gue are used to

represent user authentication, data owner authentication, authorized identity protection,

trapdoor indistinguishability and resistance to keyword-guessing attack, respectively.

As Table 2 reveals, the proposed scheme does reach a higher security level and is

therefore more user-friendly.

Table 2 Security comparison among related schemes

 Boneh et al.’s Beak et al.’s Liu et al.’s Rhee et al.’s Zhao et al.’s

Our

scheme

User Auth ○ ○ ○ ○ ○ ○

Owner Auth ╳ ╳ ╳ ╳ ╳ ○

AuthID Pro ○ ○ ○ ○ ○ ○

Trap Ind ╳ ╳ ╳ ○ ○ ○

KW Gue ╳ ╳ ╳ ○ ○ ○

User Auth : user authentication

Owner Auth : data owner authentication

AuthID Pro : authorized identity protection

Trap Ind: trapdoor indistinguishability

KW Gue : resistance to keyword-guessing attack

20

Since PEKS ciphertext generation, data owner verification, trapdoor generation,

and keyword test are the four major parts of a secure PEKS scheme and should be

performed in each session, we only took the computation costs of these four steps into

consideration when comparing our improved scheme with the others in terms of

performance. Table 3 shows the comparison results, where simplified expressions such

as PEKS, Verification, Trapdoor, and Test are used to represent PEKS ciphertext

generation, data owner verification, trapdoor generation, and keyword test, respectively.

In addition, 𝑃 denotes a map-to-point hash function operation, 𝐸 denotes a pairing

operation, and 𝑀 denotes a multiplication operation. As Table 3 reveals, Liu et al.'s

PEKS scheme is the most efficient of them all. However, Liu et al.'s scheme, as well as

Boneh et al.’s and Beak et al.’s, does not satisfy the trapdoor indistinguishability

requirement. On the other hand, although our improved scheme requires more

computation in PEKS and Test, in Trapdoor it costs less than Zhao et al.’s scheme.

Considering the fact that our improved scheme offers an obviously higher level of

security with data owner authentication, trapdoor indistinguishability and resistance to

keyword-guessing attack all covered, we find the slight extra computation in PEKS and

Test pays off well.

21

Table 3 Performance comparison among related schemes

Boneh et

al.’s

Beak et

al.’s

Liu et

al.’s

Rhee et

al.’s

Zhao et

al.’s

Our scheme

PEKS/SCF-

PEKS

1𝑃 + 1𝐸

1𝑃 + 2𝐸

+ 1𝑀

1𝑃 + 1𝐸 1𝑃 + 1𝐸

1𝑃 + 2𝐸

+ 3𝑀

3𝑃 + 3𝐸

+ 3𝑀

Verification ╳ ╳ ╳ ╳ ╳ 2𝑃 + 1𝐸

Trapdoor 1𝑃 1𝑃 + 1𝑀 1𝑃 2𝑃

4𝑃 + 1𝐸

+ 3𝑀

4𝑃 + 1𝐸

+ 2𝑀

Test 1𝑃 + 1𝐸 1𝑀 + 1𝐸 1𝐸 1𝑃 + 1𝐸

1𝑃 + 4𝐸

+ 2𝑀

1𝑃 + 4𝐸

+ 2𝑀

𝑃 denotes a map-to-point hash function operation.

E denotes a pairing operation.

M denotes a multiplication operation.

2.4.2 Correctness Analysis

The BAN logic is a well-accepted method to analyze the correctness of

cryptographic protocols. In this subsection, we will have some notations, goals and

assumptions defined and then use the BAN logic [11, 72] to verify the correctness of

our scheme.

 Notations

Let’s take a quick look at the syntax and notations of the BAN logic. First, we have

𝐴 and 𝐵 that denote two specific participators, 𝑋 stands for a formula (statement),

and
𝐾𝐴
⟼

𝐴 ,
𝐾𝐵
⟼

𝐵 , 𝐾𝐴
−1 and 𝐾𝐵

−1 are 𝐴 ’s and 𝐵 ’s public key and secret key,

respectively. There are some rules as follows [11, 72]:

1. 𝐴|≡𝑋 means 𝐴 believes that formula 𝑋 is ture.

22

2. 𝐴|≡ 𝐵 means 𝐴 believes 𝐵’s action.

3. 𝐴|⟹𝑋 means 𝐴 has complete control over formula 𝑋.

4. 𝐴 ⊲ 𝑋 means 𝐴 holds or sees formula 𝑋.

5. #(𝑋) means formula 𝑋 is fresh or has not been used before.

6. 𝐾𝐴
⟼

𝐴 means 𝐾 is the public key for 𝐴 and 𝐾𝐴
−1 is the private key for A.

7.
𝑅𝑢𝑙𝑒 1

𝑅𝑢𝑙𝑒 2
 means 𝑅𝑢𝑙𝑒 2 can be derived from 𝑅𝑢𝑙𝑒 1.

 Goals

With three roles involved, namely the data owner (𝑂𝑤𝑛𝑒𝑟), the cloud service

provider (𝐶𝑆𝑃) and the user (𝑈𝑠𝑒𝑟), in our scheme, there are two goals to be achieved:

in the data owner verification process, 𝐶𝑆𝑃 is to believe that 𝑂𝑤𝑛𝑒𝑟 has the private

key to create the PEKS ciphertext; in the keyword search process, 𝐶𝑆𝑃 is to believe

that 𝑈𝑠𝑒𝑟 has the private key to create the trapdoor of the keyword. These two goals

of our scheme can be rephrased in the language of the BAN logic as follows:

𝐺1. 𝐶𝑆𝑃|≡𝑂𝑤𝑛𝑒𝑟 ⊲ 𝐾𝑜𝑤𝑛𝑒𝑟
−1

𝐺2. 𝐶𝑆𝑃|≡𝑈𝑠𝑒𝑟 ⊲ 𝐾𝑈𝑠𝑒𝑟
−1

 Assumptions

To analyze the correctness of our scheme, there are some assumptions as follows:

𝐴1. 𝐶𝑆𝑃|≡ 𝐾𝑜𝑤𝑛𝑒𝑟
⟼

𝑂𝑤𝑛𝑒𝑟

𝐴2. 𝐶𝑆𝑃|≡ 𝐾𝑈𝑠𝑒𝑟
⟼

𝑈𝑠𝑒𝑟

𝐴3. 𝑂𝑤𝑛𝑒𝑟|≡ 𝐾𝐶𝑆𝑃
⟼

𝐶𝑆𝑃

𝐴4. 𝑂𝑤𝑛𝑒𝑟|≡ 𝐾𝑈𝑠𝑒𝑟
⟼

𝑈𝑠𝑒𝑟

𝐴5. 𝑈𝑠𝑒𝑟|≡ 𝐾𝐶𝑆𝑃
⟼

𝐶𝑆𝑃

𝐴6. 𝐶𝑆𝑃|⟹𝐾𝐶𝑆𝑃
−1

23

𝐴7. 𝐶𝑆𝑃|⟹𝐾𝑜𝑤𝑛𝑒𝑟
−1

𝐴8. 𝐶𝑆𝑃|⟹𝐾𝑈𝑠𝑒𝑟
−1

 Verification of The Data Owner

With the goals and assumptions confirmed, now we can analyze the correctness of

our data owner verification process with the BAN logic. The details are as follows:

Message 1: 𝑂𝑤𝑛𝑒𝑟 ⟶ 𝐶𝑆𝑃: 𝑅 = (𝑈, 𝑉, 𝑡, 𝑉𝑂 , 𝑟𝐴)

𝑉1. 𝐶𝑆𝑃 ⊲ 𝑅

𝑉2.
𝐶𝑆𝑃⊲𝑅,𝐶𝑆𝑃⊲𝐾𝐶𝑆𝑃

−1 ,𝐶𝑆𝑃⊲ 𝑟𝐴

𝐶𝑆𝑃⊲𝑉𝑜
′

𝑉3.
𝐶𝑆𝑃|⟹𝐾𝐶𝑆𝑃

−1 ,𝐶𝑆𝑃⊲𝑉𝑜
′

𝐶𝑆𝑃|≡𝑉𝑜

𝑉4.
𝐶𝑆𝑃|≡𝑉𝑜

𝐶𝑆𝑃|≡𝑂𝑤𝑛𝑒𝑟⊲𝐾𝑜𝑤𝑛𝑒𝑟
−1

Finally, we can infer from formula 𝑉4 that our scheme does achieve the goal we

set up. In the end, 𝐶𝑆𝑃 does believe that 𝑂𝑤𝑛𝑒𝑟 has the private key to create the

PEKS ciphertext.

 Verification of The User

Now we analyze the correctness of our user verification process with the BAN

logic as follows:

Message 1: 𝑈𝑠𝑒𝑟 ⟶ 𝐶𝑆𝑃: 𝑇𝑊 = (𝑇𝑤1, 𝑇𝑤2) and �̃� 𝑌.

𝑉1. 𝐶𝑆𝑃 ⊲ 𝑇𝑊, �̃� 𝐻1(𝐼𝐷𝑈)

𝑉2.
𝐶𝑆𝑃⊲𝑇𝑤1,𝐶𝑆𝑃⊲𝐾𝐶𝑆𝑃

−1 ,𝐶𝑆𝑃⊲�̃� 𝑌

𝐶𝑆𝑃⊲𝑇𝑤

𝑉3.
𝐶𝑆𝑃⊲(𝑇𝑤,𝑇𝑤1,𝑇𝑤2,𝑈,𝑡)

𝐶𝑆𝑃⊲(𝑆,𝑡′,𝑇)

𝑉4.
𝐶𝑆𝑃|≡(𝑇𝑤,𝑉,𝑇),𝐶𝑆𝑃|≡𝐾𝐶𝑆𝑃

−1

𝐶𝑆𝑃|≡𝑆

𝑉5.
𝐶𝑆𝑃|≡𝑆

𝐶𝑆𝑃|≡𝑇𝑤2

24

𝑉6.
𝐶𝑆𝑃|≡𝑇𝑤2

𝐶𝑆𝑃|≡𝑈𝑠𝑒𝑟⊲𝐾𝑈𝑠𝑒𝑟
−1

Finally, we can infer from formula 𝑉6 that our scheme does achieve the goal we

set up. In the end, 𝐶𝑆𝑃 does believe that 𝑈𝑠𝑒𝑟 holds the private key to create the

trapdoor of the keyword.

2.4.3 Security Analysis

In this subsection, we shall analyze the proposed scheme to see if it satisfies the

following security requirements:

(1) Only the CSP can use the keyword created by the data owner to do keyword

search.

If an attacker captures the PEKS ciphertext 𝑅 = (𝑈, 𝑉, 𝑡, 𝑉𝑂 , 𝑟𝐻1(𝐼𝐷))

through the communication channel between the data owner and the CSP and

captures the trapdoor of keyword 𝑇𝑊 = (𝑇𝑤1, 𝑇𝑤2) through the

communication channel between the user and the CSP, he/she still cannot

compute 𝐻1(𝑒(𝑥𝑄, �̃�𝐻1(𝐼𝐷𝑈)𝑃)), 𝐻1(𝑒(𝑄, �̃�𝑦) and 𝑡′ = 𝑒(𝑥𝑄, 𝑈)−1 from

the captured (R, TW) because to do that is as difficult as to solve the BDH

problem. In other words, only the CSP, who owns the private key, can

determine whether the trapdoor of the keyword is truly sent from the user by

confirming it against what the data owner set up.

(2) The trapdoor of the keyword is indistinguishable.

In our scheme, since the random string �̃� chosen by the user differs from

session to session, a keyword cannot generate the same trapdoor a second time.

In other words, the trapdoor of the same keyword will be changed in every

session. This way, even if an attacker captures the trapdoor in a given session,

25

the captured trapdoor still cannot be used to come by the keyword in any

following session.

(3) The CSP can determine that the PEKS ciphertext is sent by an authorized data

owner.

Only an authorized data owner have 𝐴 and 𝑎, both generated by the CSP.

The authorized data owner can use 𝐴 and 𝑎 to generate the PEKS ciphertext

and authentication information. Upon receiving the message, the CSP can

utilize its private key to determine whether the PEKS ciphertext is truly sent

by the authorized data owner.

(4) Only the CSP can verify the user’s identity.

Even if an attacker captures the data delivered through the communication

channel between the user and the CSP, there is still no way the attacker can

analyze the information and get to know the user’s identity. Only the CSP can

verify the user’s identity by testing the received data against the values the

CSP holds.

26

Chapter 3 Hierarchical Conditional

Proxy Re-encryption Scheme

As cloud technologies thrive, researches in the field of cloud storage have

switched their focus from encryption-decryption techniques that help data owners

protect their privacy and data confidentiality to the application of searching techniques

on encrypted data while maintaining high level security and privacy of outsource data.

To begin with, Song et al. offered some practical techniques for searches on encrypted

data. After that, Weng et al. presented their conditional proxy re-encryption scheme

where the data owner can decide which ciphertext satisfies a certain keyword condition

set and then can have the retrieved data re-encrypted by the semi-trusted proxy server.

The basic concepts of the above schemes are indeed quite innovative and do lead the

way towards the solutions to the major practical cloud storage application problems;

however, of all the researches that follow, none has had both searching on encrypted

data and conditional proxy re-encryption combined. In this paper, we propose a new

scheme for cloud storage services that integrates keyword search with conditional proxy

re-encryption. This say, with a newly added keyword or new proxy, the cloud service

provider is able to generate a hierarchical key. As far as data security is concerned, our

scheme provides proven data owner authentication, re-delegation, and chosen-

ciphertext security. The superior performance of the proposed scheme has been

established by comparing it with related works, and our security analysis as well as

BAN logic correctness check also offered solid proof that the new scheme is both

practical and robust.

27

3.1 Preliminaries

Nowadays, due to the amazing mobility and convenience the thriving Internet and

related wireless technologies have brought, more and more people have fallen into the

habit of keeping their data in cloud storage instead using traditional portable storage

devices such as USB flash drives. As people get more and more dependent on cloud

storage services, cloud servers have to handle larger and larger quantities of data,

sensitive information included. In other words, how to provide satisfactory mobility

and convenience without sacrificing data security and confidentiality in cloud

environment is the main concern. Currently, when a data owner wants to store some

sensitive data in cloud storage, he/she needs to encrypt the data before uploading them

to the cloud storage so as to maintain data secrecy. After uploading the data to cloud

storage, he/she can then access them wherever Internet connection is available; in other

words, he/she can either access the data at home or office where cabled connection is

ready, or he/she can use a mobile device such as a smart phone or tab with Wi-Fi when

he/she is out somewhere. Of course there can also be cases where a person (the data

owner) has the data uploaded to the cloud storage and then another person (the

authorized data user) accesses the data stored. However, oftentimes a data owner can

have tons and tons of data uploaded to cloud storage. How can he/she access a certain

part or certain parts of the data stored in cloud, then? In the past, there were two ways

to get the job done [23]:

1. The user downloads all his/her data from cloud. Since the data are in encrypted

form, after the downloading, the user must decrypt all the data. Now the data

are in plaintext format, and the user can finally search through them and pick

28

out the part or parts he/she desires. Just as it appears, this whole process is a

lot of trouble for the user.

2. The user sends his/her secret key to the cloud server. With the user’s secret

key, the cloud server decrypts all the data uploaded by the user and finds the

part or parts of the data that the user desires. In this design, the user has no

choice but to totally trust the cloud server, which can be a serious security

problem if the cloud server has malicious purposes.

To deal with the above problems, Song et al. [59] were the first to raise the concept

of searching on encrypted data and named it the method of keyword search. In their

method, the data owner can encrypt the data with some keywords, and the user can later

access a certain part of the encrypted data that contains a specified keyword without

having to download all the encrypted data, decrypt them all, and then do the searching.

This way, the user can easily retrieve the part of the data that is needed without leaking

any information. Here is a scenario to illustrate the concept of keyword search on

encrypted data: Suppose Alice wants to store some data in cloud storage. She generates

the ciphertext of the data. To make the data easy to access, Alice also sets the keyword

“October” for the data. After generating the ciphertext of the keyword “October”, Alice

sends all the encrypted data to cloud storage. Later, when Bob, an authorized user, wants

to retrieve the data that contains the keyword “October”, he first generates the trapdoor

of the keyword “October” and then sends this trapdoor to the cloud server as an access

request. Upon receiving the request, the cloud server searches through the encrypted

data and finds the data that contains the keyword “October” without decrypting the

ciphertext. After that, the cloud server returns the corresponding ciphertext to Bob.

However, in real-world practice, there are always risks when the cloud user has to

fully trust the cloud service provider. In other words, there is no way the data owner

29

should hand his/her private key over to the server. To solve this problem, Blaze et al.

[5] presented the concept of proxy re-encryption which allows the delegated semi-

trusted server to re-encrypt the ciphertext by using a re-encryption key without learning

any information about the plaintext. There is a scenario to illustrate the concept of proxy

re-encryption: Alice uses her public key to encrypt the data and uploads the encrypted

data to the server. Alice has some data for Bob, but she does not want Bob to have her

private key. Without Alice’s private key, Bob cannot decrypt the data. In order for Bob

to be able to decrypt the ciphertext by using his own private key, Alice exploits her

pubic key and Bob’s public key to generate a new key for the server called a re-

encryption key. With this key, the server can re-encrypt the ciphertext without getting

the plaintext. Then Bob can use his private key to decrypt the ciphertext without getting

Alice’s private key.

Later in 2009, the notion of conditional proxy re-encryption was brought up by

Weng et al. [71]. As the name suggests, by applying conditional proxy re-encryption,

the data owner is enabled to decide which ciphertext satisfies a certain keyword

condition set that can be re-encrypted by the proxy. Then, in 2012, Fang et al. took a

step further and proposed a hierarchical conditional proxy re-encryption scheme [24].

Inspired by Fang et al., in this paper, we shall propose a searchable hierarchical

conditional proxy re-encryption scheme we have designed for cloud storage. As the

name reveals, the aim of our new scheme is to combine keyword search and conditional

proxy re-encryption. Our scheme has the following properties:

1. Searching data without decrypting the ciphertext

The CSP (Cloud Server Provider) does not need to decrypt the ciphertext; all

the CSP does with the data in cloud storage is search on the encrypted data

with a keyword in encrypted format to find the data the user needs.

30

2. User authentication

The CSP can confirm the user’s real identity with the trapdoor sent from the

user.

3. Data owner authentication

The CSP can utilize the ciphertext uploaded by the data owner and some

public parameters to verify the legality of the data owner’s identity and the

ciphertext.

4. Re-delegation

The CSP can utilize its re-encryption key to derive the sub-re-encryption key

for the newly added keyword or for their children.

5. Chosen-ciphertext security

Our scheme is based on Fang et al.’s design [24]; by the same token, our

scheme provides the same level of chosen-ciphertext security on the first and

the second ciphertext.

3.2 Related Works

In this section, some related works dealing with keyword search on encryption

data as well as some proxy re-encryption and conditional proxy re-encryption schemes

will be quickly reviewed.

3.2.1 Keyword Search on Encrypted Data

To make searching on encrypted data possible, Song et al. [59] first proposed a

secure keyword search scheme in 2000. After that, many researchers have focused on

how to design secure, efficient schemes for searches on encrypted data [2, 6, 9, 13, 26,

31, 36, 39, 41, 43, 44, 49, 51, 58, 73, 77]. In 2004, Boneh et al. [6] proposed the idea

of public key encryption with keyword search (PEKS), which allows the server to

31

search through the stored data for the parts that contain certain keywords without

decrypting the ciphertext. Golle et al. [26] proposed a conjunctive keyword search

mechanism that allows the user to search with a conjunction of multiple keywords.

Later, Park et al. [49] proposed an efficient public encryption scheme with conjunctive

keyword search. On the other hand, to avoid the use of pairing operations, in 2006,

Khader [36] proposed a public key encryption scheme with keyword search based on

K-Resilient IBE. In 2008, Baek et al. [2] extended the PEKS into a secure channel free

public key encryption scheme with keyword search (SCF-PEKS), which does not

include any secure channel between the user and the server. Then, in 2009, Liu et al.

[43] proposed an efficient privacy preserving keyword search (EPPKS) scheme to

improve the performance of PEKS, while Rhee et al. [51] brought up the concept of

trapdoor indistinguishability and proposed a new scheme to mend the weakness they

found in Baek et al.’s SCF-PEKS. In 2012, Liu et al. [44] improved Liu et al.’s EPPKS

and proposed a new keyword search scheme called Secure and Privacy-preserving

Keyword Search (SPKS) that can do searches on encrypted data with the server in

charge of the re-encryption of the ciphertext.

3.2.2 Proxy Re-encryption

A proxy re-encryption (PRE) scheme allows the delegated semi-trusted server to

re-encrypt the ciphertext by using its re-encryption key without learning any

information about the plaintext. The concept of proxy re-encryption was proposed by

Blaze et al. [5] in 1998. Later on, the pairing operation was commonly used in schemes

of this kind [1, 12, 20, 27, 42, 70]. In 2007, Ateniese et al. proposed an identity-based

proxy re-encryption scheme where the ciphertext can be transformed from one identity

to another [1]. In addition, Chu and Tzeng [20] also proposed an identity-based proxy

32

re-encryption scheme without random oracles. Finally, due to the fact that the pairing

operation consumes too much communication resources, in recent years, some PRE

schemes have been proposed to avoid the use of the pairing operation [18, 22, 47, 53].

3.2.3 Conditional Proxy Re-encryption

Firstly, type-based proxy re-encryption (TB-PRE) is a design where the data owner

can categorize his/her ciphertext into different subsets and then delegate the decryption

right of each subset to a specific delegator. In 2008, Tang [61] first proposed the

construction of TB-PRE, providing fine-grained delegation and enabling the semi-

trusted server to re-encrypt ciphertext of a specific type by using a re-encryption key.

Since then, quite a big portion of research endeavors in the field of study have been

dedicated to the development of TB-PRE schemes [21, 24, 25, 56, 63, 71, 72]. Among

the schemes, Seo et al.’s TB-PRE scheme offered proven security against the standard-

model chosen ciphertext attack and achieved proxy invisibility [56]. Since by definition

TB-PRE means that the data owner can categorize the ciphertext into different subsets,

TB-PRE is also referred to as conditional proxy re-encryption (C-PRE), where a

condition is equivalent to a type [56]. Weng et al. [71] presented a kind of conditional

proxy re-encryption where the data owner can assign some specific ciphertext to match

a certain keyword condition set that can be re-encrypted by the semi-trusted proxy

server. Later, Weng et al. [72] pointed out that Weng et al.’s scheme [721] had failed to

achieve chosen ciphertext attack security (CCA-security), and so they proposed a new

C-PRE scheme to fix that problem. In addition, Fang et al. [25] also proposed an

anonymous conditional proxy re-encryption scheme without random oracle. Chu et al.

[21] presented a conditional proxy broadcast re-encryption scheme where the proxy can

delegate decryption rights to a set of users at a time. In 2010, Vivek et al. [63] improved

33

the performance of Weng et al.’s [72] C-PRE scheme and proposed a more efficient

construction for C-PRE. In 2012, Fang et al. proposed a hierarchical conditional proxy

re-encryption (HC-PRE) scheme that enhanced the concept of C-PRE by allowing more

general re-encryption key delegation patterns [24].

To this day, no scheme proposed has had both ideas of searching on encrypted data

and conditional proxy re-encryption combined. Inspired by Fang et al. [24], in this paper,

we propose a new scheme that puts together keyword search and conditional proxy re-

encryption.

3.3 Review Weng et al.’s Scheme

In this section, we shall review bilinear pairing [7], give some complexity

assumptions in our scheme, and then introduce the idea of hierarchical conditional

proxy re-encryption [72].

3.3.1 Bilinear Pairing

Let 𝔾1and 𝔾2 be two cyclic group with prime order 𝑝, and 𝑔 is the generator

of group 𝔾1. Suppose we have 𝑎, 𝑏 ∈ ℤ𝑞 and a bilinear map 𝑒: 𝔾1 × 𝔾1 → 𝔾2. Then

there are some notable properties as follows [7]:

 Bilinearity for all 𝑎, 𝑏 ∈ ℤ𝑞and𝑃, 𝑄 ∈ 𝔾1,𝑒(𝑎𝑃, 𝑏𝑄) = 𝑒(𝑃, 𝑄)𝑎𝑏.

 Computability. There in always an efficient polynomial time algorithm to

compute 𝑒(𝑃, 𝑄) ∈ 𝔾2, for any 𝑃, 𝑄 ∈ 𝔾1.

 Non-degeneration. There is always such a pair of 𝑃 and 𝑄 ∈ 𝔾1 that

satisfies 𝑒(𝑃, 𝑄) ≠ 1.

34

3.3.2 Hierarchical Conditional Proxy Re-encryption

Here is the hierarchical conditional proxy re-encryption design proposed by Weng

et al. in 2009 [72]. In their scheme, there are eight algorithms: setup, key generation,

re-encryption key generation, level 2 encryption, level 1 encryption, re-encryption,

level 2 decryption, and level 1 decryption. Figure 3 gives a rough idea of how the system

works, and the algorithms are as follows:

 Setup: The setup algorithm is executed by a trusted party with the input being

the security parameter 1𝐾 and the output the global parameters 𝐺𝑃.

 KeyGen: The key generation algorithm produces the public key 𝑝𝑘𝑖 and

secret key 𝑠𝑘𝑖 for the user 𝑖.

 RKeyGen: The re-encryption key generation algorithm takes the secret key

𝑠𝑘𝑖, the conditional keyword 𝑤, and the other public key 𝑝𝑘𝑗 as input and

then outputs the re-encryption key 𝑟𝑘
𝑖

𝑤
→𝑗

.

 Enc2: Level 2 encryption algorithm intakes the public key 𝑝𝑘, the plaintext

𝑚 ∈ ℳ and the conditional keyword 𝑤 and then outputs level 2 ciphertext

𝐶𝑇. Here ℳ is the message space.

 Enc1: Level 1 encryption algorithm takes the public key 𝑝𝑘 and the

plaintext 𝑚 ∈ ℳ as input and then outputs level 1 ciphertext 𝐶𝑇. Notice

that this ciphertext cannot be encrypted by any other user.

35

 ReEnc: The re-encryption algorithm intakes the second ciphertext 𝐶𝑇 and

the re-encryption key 𝑟𝑘
𝑖

𝑤
→𝑗

.

 Dec2: Level 2 decryption algorithm takes the second ciphertext 𝐶𝑇 and the

secret key 𝑠𝑘 as input and then outputs the message 𝑚.

 Dec1: Level 1 decryption algorithm intakes the first ciphertext 𝐶𝑇 and the

secret key 𝑠𝑘 and then outputs the message 𝑚.

1. Re-encryption key

and ciphertext

Proxy

Authenticated user
Owner

2. Requirement

3. Re-encrypt

4. Re-encryption ciphertext

Figure 3 Hierarchical conditional proxy re-encryption

36

3.4 New Scheme

In this section, we shall present our searchable hierarchical conditional proxy re-

encryption scheme. We will first illustrate the framework of our scheme and then give

detailed descriptions to all the phases of our scheme.

3.4.1 Framework

In this subsection, we shall first introduce the participants in our scheme and then

the phases. There are four kinds of participants in our scheme: the trusted third party

(TTP), the cloud service provider (CSP), the data owner, and the users. The role each

participant plays is shown as follows.

1. Trusted third party (TTP): The trusted third party is responsible for

generating the public key and the secret key for the user and the data owner

and also generating the re-encryption key for the cloud server provider.

2. Cloud service provider (CSP): The function of CSP is to accept and store the

ciphertext sent by the data owner. Upon receiving the retrieval request from

the user, CSP searches through the stored data and finds what the user wants.

Besides that, CSP is able to re-encrypt the ciphertext and uses a re-encryption

key to generate a hierarchical key for a newly added keyword.

3. Data owner: The data owner generates ciphertext on two different levels. One

does not contain the keyword vector, while the other contains the keyword

vector set by the data owner.

37

4. Users: When a user wants to retrieve some data that contains a certain

keyword, the user needs to generate the trapdoor of the keyword and then

send it to CSP as a request. Then, when the user receives the re-encrypted

ciphertext that CSP returns, he/she can use his/her secret key to decrypt it.

There are 11 phases in our scheme: setup, key generation, re-encryption key

generation, level 1 encryption, level 2 encryption, verification, trapdoor generation,

keyword searching, re-encryption, level 1 decryption, and level 2 decryption. The

flowchart of our scheme is shown in Figure 4, and the function of each phase is as

follows:

 Setup: In this phase, the security parameter is the input, the bilinear map

is set, and then the system public parameters are outputted.

 KeyGen: In this phase, the system public parameters are inputted, and the

public key and the secret key for the data owner and the user are outputted.

 Re-keyGen: In this phase, the inputs are the user’s secret key, the data

owner’s secret key and a conditional keyword vector, and then the output is

the re-encryption key for CSP. When a new keyword is added to the

conditional keyword vector, CSP can use the current re-encryption key to

generate a new re-encryption key. This is called hierarchical key derivation.

 Enc1: In order to have the message encrypted, the data owner inputs the

message along with his/her public key and then gets the first level ciphertext

for CSP.

38

 Enc2: To encrypt the message with a conditional keyword vector, the data

owner inputs the message along with his/her public key and a conditional

keyword vector. The output is the second level ciphertext for CSP.

 Verify: Upon receiving the ciphertext, CSP determines whether the ciphertext

is truly sent by the data owner and has not been tampered by a malicious

attacker.

 Trapdoor: In order to retrieve the data which contains a certain keyword, the

user generates the trapdoor of the keyword vector and then sends it to CSP.

 Search: To search for the data the user requests, CSP inputs the ciphertext,

the user’s public key and the trapdoor.

 ReEnc: When CSP finds the data that the user requests, CSP uses the re-

encryption key to encrypt the ciphertext.

 Dec1: The user inputs his/her secret key and the first level ciphertext to

decrypt the ciphertext.

 Dec2: The user inputs his/her secret key and the second level ciphertext to

decrypt the ciphertext.

39

3.4.2 Searchable Hierarchical Conditional Proxy Re-

encryption

In this subsection, we look into the details of the phases in our scheme. Table 4

lists the notations used in our scheme.

1. Public and secret key

1. Re-encryption key

1. Public and secret key

2. Ciphertext

TTP

CSP

Authenticated user

Owner

4. Trapdoor

5. Search and re-encrypt

6. Re-encryption ciphertext

3. Verify and store

Figure 4 Searchable hierarchical conditional proxy re-encryption

40

Table 4 Notations used in searchable hierarchical conditional PRE

Notations Descriptions

𝑝

𝑔

𝐺1, 𝐺2

𝑒

𝐿

𝑚

⨁

A prime order

A generator of 𝐺1

Multiplicative cyclic groups of prime order 𝑝

Bilinear map 𝑒: 𝐺1 × 𝐺1 → 𝐺2

The maximum length of keyword vector

The message, 𝑚 ∈ ℳ

XOR operation

 Setup: With a security parameter inputted, set (𝑝, 𝑔, 𝐺1, 𝐺2, 𝑒) as bilinear

map parameters. Then, ℳ = {0,1}𝑘1 is set as the message space, and there

are four one-way hash functions 𝐻1: {0,1}∗ → 𝑍𝑝
∗ , 𝐻2: 𝐺2 →

{0,1}𝑘1 , 𝐻3: {0,1}∗ → 𝐺1
∗, and 𝐻4: {0,1}∗ → 𝑍𝑝

∗ . Let the conditional keyword

vector be 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑘) ∈ {0,1}∗ , where 𝑘 is the length of 𝑊 .

Generate the random numbers 𝑔1, 𝑔2, ℎ1, ℎ2, … , ℎ𝐿 ∈ 𝐺1. The system public

parameters are (𝑝, 𝑔, 𝐺1, 𝐺2, 𝑒, 𝑔1, 𝑔2, ℎ1, … , ℎ𝐿, 𝑘1, 𝐿, 𝐻1, 𝐻2, 𝐻3, 𝐻4).

 KeyGen: Generate a random number 𝑥𝑖 ∈ 𝑍𝑝
∗ for user 𝑖 and then compute

𝑋𝑖 = 𝑔𝑥𝑖 . Set the public key as 𝑝𝑘𝑖 = 𝑋𝑖 and secret key as 𝑠𝑘𝑖 = 𝑥𝑖 for

user 𝑖.

 Re-keyGen: Given the data owner’s secret key 𝑠𝑘𝑖, the conditional keyword

vector 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑘), and the user’s secret key 𝑠𝑘𝑗, select a random

41

number 𝑟 ∈ 𝑍𝑝
∗ and compute 𝑎0 = 𝑔2

𝑥𝑖−𝑥𝑗 (∏ ℎ𝑙
𝐻4(𝑝𝑘𝑖,𝑤𝑙)

𝑔1
𝑘
𝑙=1)

𝑙∈{𝑘+1,…,𝐿}

𝑟

,

𝑎2 = 𝑔𝑟 , and𝑏 = (𝑏𝑙 = ℎ𝑙
𝑟)𝑙∈{𝑘+1,…,𝐿} . The re-encryption key for CSP is

𝑟𝑘𝑖,𝑊,𝑗 = (𝑎0, 𝑎1, 𝑏). When CSP needs to generate a new re-encryption key

for a new keyword vector 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑘 , 𝑤𝑘+1), CSP picks a random

number 𝑡 ∈ 𝑍𝑝
∗ and then computes 𝑎0′ =

𝑎0𝑏𝑘+1
𝐻4(𝑝𝑘𝑖,𝑤𝑘+1)

(∏ ℎ𝑙
𝐻4(𝑝𝑘𝑖 ,𝑤𝑙)

𝑔1
𝑘+1
𝑙=1)

𝑙∈{𝑘+2,…,𝐿}

𝑡

, 𝑎1′ = 𝑎1𝑔𝑡, and 𝑏′ = (𝑏𝑙 =

ℎ𝑙
𝑡)𝑙∈{𝑘+2,…,𝐿} . The hierarchical re-encryption key is 𝑟𝑘𝑖,𝑊𝑘+1,𝑗 =

(𝑎0′, 𝑎1′, 𝑏′), which is properly distributed to 𝑊𝑘+1for 𝑟′ = 𝑟 + 𝑡.

 Enc1: Data owner chooses a random number 𝑅 ∈ 𝐺2
∗ and then computes

𝑠 = 𝐻1(𝑚, 𝑅), 𝐵 = 𝑔𝑠, 𝐷 = 𝑒(𝑋𝑖 , 𝑔2)𝑠𝑅,and 𝐸 = 𝑚⨁𝐻2(𝑅). The first level

ciphertext is 𝐶𝑇𝑖 = (𝐵, 𝐷, 𝐸).

 Enc2: To encrypt the message with the conditional keyword vector 𝑊 =

(𝑤1, 𝑤2, … , 𝑤𝑘) , data owner chooses 𝑅 ∈ 𝐺2
∗ and then computes 𝑠 =

𝐻1(𝑚, 𝑅), 𝐵 = 𝑔𝑠, 𝐶 = (∏ ℎ𝑙
𝐻4(𝑝𝑘𝑖,𝑤𝑙)

𝑔1
𝑘
𝑙=1)

𝑠

, 𝐷 = 𝑒(𝑋𝑖 , 𝑔2)𝑠𝑅, 𝐸 =

𝑚⨁𝐻2(𝑅), and 𝐹 = 𝐻3(𝐵, 𝐶, 𝐷, 𝐸)𝑠. The second level ciphertext is 𝐶𝑇𝑖 =

(𝐵, 𝐶, 𝐷, 𝐸, 𝐹).

 Verify: After receiving the ciphertext, CSP checks out

e (∏ ℎ𝑙
𝐻4(𝑝𝑘𝑖,𝑤𝑙)

𝑔1
𝑘
𝑙=1 , 𝐵) =? 𝑒(𝐶, 𝑔) and 𝑒(𝐻3(𝐵, 𝐶, 𝐷, 𝐸), 𝐵) =? 𝑒(𝐹, 𝑔) .

If both check out, CSP accepts and stores the ciphertext.

 Trapdoor: When the user wants to retrieve a part of the stored data that

contains the conditional keyword vector 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑘) , he/she

42

computes the trapdoor of the conditional keyword vector as 𝑇𝑤𝑗
=

(∏ ℎ𝑙
𝐻4(𝑋𝑖,𝑤𝑙)𝑘

𝑙=1 𝑔1)
𝑥𝑗

 and then sends it to CSP.

 Test: When receiving the trapdoor from the user, CSP tests to see whether

𝑒(𝐵, 𝑇𝑤𝑗
) is equal to 𝑒(𝑝𝑘𝑗, 𝐶) or not. If the result is positive, CSP re-

encrypts the ciphertext and then sends it to the user.

 ReEnc: After finding the data that the user requests, CSP re-encrypts the

ciphertext by computing 𝐷′ =
𝑒(𝑎1,𝐶)

𝑒(𝑎0,𝐵)
∙ 𝐷 . The re-encrypted ciphertext,

namely 𝐶𝑇𝑗 = (𝐵, 𝐷′, 𝐸), is then sent to the user.

 Dec1: To decrypt the re-encrypted first level ciphertext 𝐶𝑇𝑗 = (𝐵, 𝐷′, 𝐸), the

user uses his/her secret key 𝑠𝑘𝑗 and computes 𝑅 =
𝐷′

𝑒(𝐵,𝑔2)
𝑥𝑗

, 𝑚 =

𝐸⨁𝐻2(𝑅), and 𝑠 = 𝐻1(𝑚, 𝑅) . After computing 𝑅, 𝑚 and 𝑠 , the user

checks 𝐵 =? 𝑔𝑠. If it checks out, then the message 𝑚 is returned.

 Dec2: To decrypt the re-encrypted second level ciphertext 𝐶𝑇𝑗 =

(𝐵, 𝐶, 𝐷′, 𝐸, 𝐹) containing the conditional keyword vector, the user uses

his/her secret key 𝑠𝑘𝑗 and computes =
𝐷′

𝑒(𝐵,𝑔2)
𝑥𝑗

, 𝑚 = 𝐸⨁𝐻2(𝑅), and 𝑠 =

𝐻1(𝑚, 𝑅). After computing 𝑅, 𝑚 and 𝑠 , the user checks 𝐵 =? 𝑔𝑠 , 𝐶 =

? (∏ ℎ𝑙
𝐻4(𝑝𝑘𝑖,𝑤𝑙)

𝑔1
𝑘
𝑙=1)

𝑠

, and 𝐹 =? 𝐻3(𝐵, 𝐶, 𝐷′, 𝐸)𝑠. If all check out, then the

message 𝑚 is returned.

43

3.5 Security and Function Analysis

In this section, we shall first show how our new scheme compares with Zhao et

al.’s [77], Liu et al.’s [44], Fang et al.’s [24], and Seo et al.’s scheme [56] in terms of

function as well as performance. Then, we will analyze the security of our scheme and

confirm the correctness with a BAN logic [11, 73] check.

3.5.1 Comparisons

In this subsection, we compare the functions and performance of our scheme with

those of Zhao et al.’s, Liu et al.’s, Fang et al.’s, and Seo et al.’s scheme. Of all the

schemes compared, Zhao et al.’s, and Liu et al.’s focus on secure keyword search , while

Fang et al.’s, and Seo et al.’s focus on conditional proxy re-encryption.

3.5.1.1 Function Comparison

Before looking into the comparison results, let’s define some abbreviations we use.

Expressions such as AuthID Pro, User Auth, Owner Auth, Searching, and P-Re are used

to indicate authorized identity protection, user authentication, data owner

authentication, search on encrypted data, and proxy re-encryption, respectively. The

comparison results are given in Table 5. As the table reveals, Zhao et al.’s, and Liu et

al.’s both fall short of offering data owner authentication, which means vulnerability to

the modification attack where the attacker sends fake ciphertext to CSP and the user

never receives the data he/she requests. On the other hand, although Fang et al.’s and

Seo et al.’s are under the protection of data owner authentication, they are both

incapable of supporting searches on encrypted data. In contrast, our scheme offers both

data owner authentication but also searching on encrypted data.

44

Table 5 Function comparison of our scheme and other schemes

 AuthID Pro User Auth Owner Auth Searching P-Re

Zhao et al.’s v v x v x

Liu et al.’s v v x v v

Fang et al.’s v v v x v

Seo et al.’s v v v x v

Our scheme v v v v v

AuthID Pro : authorized identity protection

User Auth : user authentication

Owner Auth : data owner authentication

Searching : search on encrypted data

P-Re : proxy re-encryption

3.5.1.2 Performance Comparison

For the performance comparison, we use Encrypt, Trapdoor, Verification, Test, and

Re-encryption as abbreviations for conditional encryption, trapdoor generation,

verification of data owner, keyword test, and proxy re-encryption, respectively. Note

that conditional encryption includes conditional encryption, type-based encryption, and

keyword encryption. In addition, we define 𝑃 as a map-to-point hash function

operation, 𝐸 as a pairing operation, and 𝑀 as a multiplication operation in 𝐺1. The

performance comparison results are given in Table 6.

45

Table 6 Performance comparison of our scheme and other schemes

 Encrypt Trapdoor Verification Test Re-encryption

Zhao et al.’s

1𝑃 + 2𝐸

+ 3𝑀

4𝑃 + 1𝐸

+ 3𝑀

−

1𝑃 + 4𝐸

+ 2𝑀

−

Liu et al.’s 1𝑃 + 1𝐸 1𝑃 − 1𝐸

1𝑃 + 2𝐸

+ 2𝑀

Fang et al.’s

3𝑃 + 1𝐸

+ 3𝑀

− 2𝐸 + 1𝑀 − 2𝐸

Seo et al.’s 1𝐸 + 4𝑀 − 1𝐸 + 2𝑀 − 1𝑀

Our scheme

3𝑃 + 1𝐸

+ 3𝑀

0𝑃 + 0𝐸

+ 0𝑀

2𝐸 + 1𝑀 1𝐸 2𝐸

𝑃 denotes a map-to-point hash function operation.

𝐸 denotes a pairing operation.

𝑀 denotes a multiplication operation in 𝐺1.

3.5.2 Security Analysis

In this subsection, we analyze the security of our scheme.

1. CSP can verify the data owner’s identity.

To determine the legitimacy of the data owner, CSP utilizes the ciphertext

𝐵, 𝐶, 𝐷, 𝐸, 𝐹, data owner’s public key, and the keyword vector to verify the

data owner’s identity. Because the data owner uses the public key to generate

the ciphertext, CSP can confirm the data owner’s identity by checking out the

ciphertext.

46

2. CSP can verify that the sender of the ciphertext is an authorized data owner.

To avoid mistakenly accepting tampered ciphertext from a malicious

attacker, CSP must check the integrity of the ciphertext. When CSP verifies

the data owner’s identity, the ciphertext is examined at the same time. If any

part of the ciphertext is tampered, it cannot pass the verification.

3. CSP can verify the user’s identity.

Upon receiving the trapdoor of the keyword vector from a user as a searching

request, CSP must check the user’s identity to make sure he/she is properly

authorized. CSP utilizes the ciphertext 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, the data owner’s public

key, the user’s pubic key and the keyword vector to verify the user’s identity.

Only a legitimate user owns the secret key that can be used to generate the

trapdoor. In fact, CSP can verify the user’s identity and search for the data

the user requests as the same time.

4. The user can verify whether the ciphertext is tampered.

Upon receiving the re-encrypted ciphertext, the user verifies the integrity of

the re-encrypted ciphertext to determine whether it has been tampered by a

malicious attacker. The user exploits his/her secret key to decrypt the re-

encrypted ciphertext. After decrypting the re-encrypted ciphertext, the user

exploits the re-encrypted ciphertext and the plaintext to check the integrity of

the ciphertext. Only CSP has the re-encryption key and thus can have the

ciphertext re-encrypted, and only the legitimate user can exploit his/her secret

key to recover the integral plaintext.

5. Our scheme can achieve chosen-ciphertext security.

Based on Fang et al.’s design [15], our scheme inherits the chosen-ciphertext

security on the first and the second ciphertext.

47

3.5.3 Correctness Analysis

In this subsection, we use the BAN logic [11, 73] to check the correctness of the

data owner verification, user verification, and ciphertext verification of our scheme.

The BAN logic is a well-accepted method to analyze the correctness of cryptographic

protocols. Before applying the BAN logic, let’s define some notations, goals and

assumptions as follows.

 Notations

Here we deal with the syntax and notations of the BAN logic. Assume that 𝐴 and

𝐵 are some specific participators, and 𝑋 is the formula (statement). The basic rules of

language are as follows [11, 73]:

8. 𝐴|≡𝑋 means 𝐴 believes that formula 𝑋 is ture.

9. 𝐴|≡ 𝐵 means 𝐴 believes 𝐵’s action.

10. 𝐴|⟹𝑋 means 𝐴 has complete control over formula 𝑋.

11. 𝐴 ⊲ 𝑋 means 𝐴 holds or sees formula 𝑋.

12. #(𝑋) means formula 𝑋 is fresh and has not been used before.

13. 𝐾𝐴
⟼

𝐴 means 𝐾𝐴 is the public key for 𝐴 and 𝐾𝐴
−1 is the private key for A.

14.
𝑅𝑢𝑙𝑒 1

𝑅𝑢𝑙𝑒 2
 means 𝑅𝑢𝑙𝑒 2 is derived from 𝑅𝑢𝑙𝑒 1.

 Goals

The roles and the goals in our scheme are as follows. First, there are four roles in

our scheme: the trusted third party (𝑇𝑇𝑃), the data owner (𝑂𝑤𝑛𝑒𝑟), the cloud service

provider (𝐶𝑆𝑃), and the user (𝑈𝑠𝑒𝑟). Then, there are three goals to be achieved. In the

48

BAN logic language, the three goals are:

𝐺1.𝐶𝑆𝑃|≡𝑂𝑤𝑛𝑒𝑟 ⊲ 𝐾𝑜𝑤𝑛𝑒𝑟
−1

𝐺2.𝐶𝑆𝑃|≡𝑈𝑠𝑒𝑟 ⊲ 𝐾𝑈𝑠𝑒𝑟
−1

𝐺3.𝑈𝑠𝑒𝑟|≡𝐶𝑆𝑃 ⊲ 𝑟𝑘

𝐺1 means in verification phase 𝐶𝑆𝑃 needs to make sure that the sender of the

ciphertext is 𝑂𝑤𝑛𝑒𝑟 and that the ciphertext has not been tampered by an attacker. So

𝐶𝑆𝑃 must believe that 𝑂𝑤𝑛𝑒𝑟 holds his/her private key so that he/she can create the

ciphertext. 𝐺2 means in the test phase 𝐶𝑆𝑃 needs to verify 𝑈𝑠𝑒𝑟 ’s identity to

determine that the trapdoor is permissible by believing that 𝑈𝑠𝑒𝑟 holds his/her private

key so that he/she can create the trapdoor. 𝐺3 means 𝑈𝑠𝑒𝑟 needs to determine that

the re-encrypted ciphertext has not been tampered by an attacker; in other words, 𝑈𝑠𝑒𝑟

needs to believe that 𝐶𝑆𝑃 holds the re-encryption key 𝑟𝑘 to generate the re-

encrypted ciphertext.

 Assumptions

With the goals set, now let’s state our assumptions as follows:

𝐴1.𝐶𝑆𝑃|≡ 𝐾𝑜𝑤𝑛𝑒𝑟
⟼

𝑂𝑤𝑛𝑒𝑟

𝐴2.𝑈𝑠𝑒𝑟|≡ 𝐾𝑂𝑤𝑛𝑒𝑟
⟼

𝑂𝑤𝑛𝑒𝑟

𝐴3.𝐶𝑆𝑃|≡ 𝐾𝑈𝑠𝑒𝑟
⟼

𝑈𝑠𝑒𝑟

𝐴4.𝑂𝑤𝑛𝑒𝑟|⟹𝐾𝑜𝑤𝑛𝑒𝑟
−1

𝐴5.𝑈𝑠𝑒𝑟|⟹𝐾𝑈𝑠𝑒𝑟
−1

𝐴6.𝐶𝑆𝑃|⟹𝑟𝑘

𝐴7.𝐶𝑆𝑃|⟹𝑊

49

 Verification of The Data Owner

The data owner verification process in the verification phase is checked with the

BAN logic as follows:

Message 1: 𝑂𝑤𝑛𝑒𝑟 ⟶ 𝐶𝑆𝑃: 𝐶𝑇𝑖 = (𝐵, 𝐶, 𝐷, 𝐸, 𝐹)

𝑉1. 𝐶𝑆𝑃 ⊲ 𝐵, 𝐶, 𝐷, 𝐸, 𝐹

𝑉2.
𝐶𝑆𝑃⊲𝑤𝑙,𝐶𝑆𝑃⊲𝐵

𝐶𝑆𝑃⊲𝐶

𝑉3.
𝐶𝑆𝑃⊲𝐶,𝐶𝑆𝑃⊲𝐷,𝐶𝑆𝑃⊲𝐸

𝐶𝑆𝑃⊲𝐹

𝑉4.
𝐶𝑆𝑃|≡𝐹

𝐶𝑆𝑃|≡(𝐵,𝐷,𝐸)

𝑉5.
𝐶𝑆𝑃|≡𝐷,𝐶𝑆𝑃|≡𝐾𝑜𝑤𝑛𝑒𝑟

⟼ 𝑂𝑤𝑛𝑒𝑟

𝐶𝑆𝑃|≡𝑂𝑤𝑛𝑒𝑟⊲𝐾𝑜𝑤𝑛𝑒𝑟
−1

When 𝐶𝑆𝑃 receives the ciphertext from 𝑂𝑤𝑛𝑒𝑟 , 𝐶𝑆𝑃 can exploit the

information to determine the correctness. From formula 𝑉5, we can infer that our

scheme does achieve the goal we set. By formula 𝑉5, 𝐶𝑆𝑃 believes that 𝑂𝑤𝑛𝑒𝑟

holds the private key to create the ciphertext.

 Verification of The User

The correctness of user verification in the test phase is verified with the BAN logic

as follows:

Message 1: 𝑈𝑠𝑒𝑟 ⟶ 𝐶𝑆𝑃: 𝑇𝑤𝑗

𝑉1. 𝐶𝑆𝑃 ⊲ 𝑇𝑤𝑗

𝑉2.
𝐶𝑆𝑃|≡𝑊,𝐶𝑆𝑃|≡(𝐵,𝐶),𝐶𝑆𝑃|≡𝐾𝑈𝑠𝑒𝑟

⟼ 𝑈𝑠𝑒𝑟

𝐶𝑆𝑃|≡𝑇𝑤𝑗

50

𝑉3.
𝐶𝑆𝑃|≡𝑇𝑤𝑗

𝐶𝑆𝑃|≡𝑈𝑠𝑒𝑟⊲𝐾𝑈𝑠𝑒𝑟
−1

When 𝐶𝑆𝑃 receives the trapdoor, 𝐶𝑆𝑃 can exploit the ciphertext sent from

𝑂𝑤𝑛𝑒𝑟 and 𝑈𝑠𝑒𝑟’s public key to determine the correctness. Formula 𝑉3, we can infer

that our scheme achieves the goal we set for 𝑇𝑒𝑠𝑡 phase. By formula 𝑉3 , 𝐶𝑆𝑃

believes that 𝑈𝑠𝑒𝑟 holds the private key to create the trapdoor.

 Verification of The Ciphertext

In this subsection, we examine the correctness of the re-encrypted ciphertext

verification process in the decryption phase (including 𝐷𝑒𝑐1 and 𝐷𝑒𝑐2) with the

BAN logic. The details are as follows:

For 𝐷𝑒𝑐1:

Message 1: 𝐶𝑆𝑃 ⟶ 𝑈𝑠𝑒𝑟: 𝐶𝑇𝑗 = (𝐵, 𝐷′, 𝐸)

𝑉1. 𝑈𝑠𝑒𝑟 ⊲ 𝐵, 𝐷′, 𝐸

𝑉2.
𝑈𝑠𝑒𝑟⊲(𝐵,𝐷′),𝑈𝑠𝑒𝑟⊲ 𝐾𝑈𝑠𝑒𝑟

−1

𝑈𝑠𝑒𝑟⊲𝑅

𝑉3.
𝑈𝑠𝑒𝑟⊲𝐸,𝑈𝑠𝑒𝑟⊲𝑅

𝑈𝑠𝑒𝑟⊲𝑚

𝑉4.
𝑈𝑠𝑒𝑟⊲(𝑚,𝑅)

𝑈𝑠𝑒𝑟⊲𝑠

𝑉5.
𝑈𝑠𝑒𝑟|≡(𝑠,𝐵)

𝑈𝑠𝑒𝑟|≡(𝑅,𝑚)

𝑉6.
𝑈𝑠𝑒𝑟|≡𝑅

𝑈𝑠𝑒𝑟|≡𝐷′

𝑉7.
𝑈𝑠𝑒𝑟|≡𝐷′

𝑈𝑠𝑒𝑟|≡𝐶𝑆𝑃⊲𝑟𝑘

When 𝑈𝑠𝑒𝑟 receives the ciphertext, he/she exploits all information contained in

it to determine that the re-encrypted ciphertext is truly sent by 𝐶𝑆𝑃 and has not been

51

tampered by an attacker. By formula 𝑉7, 𝑈𝑠𝑒𝑟 believes 𝐶𝑆𝑃 holds the re-encryption

key that can be used to re-encrypt the ciphertext, and therefore we can infer that our

scheme achieves the goal we set for phase 𝐷𝑒𝑐1.

For 𝐷𝑒𝑐2:

Message 1: 𝐶𝑆𝑃 ⟶ 𝑈𝑠𝑒𝑟: 𝐶𝑇𝑗 = (𝐵, 𝐶, 𝐷′, 𝐸, 𝐹)

𝑉1. 𝑈𝑠𝑒𝑟 ⊲ 𝐵, 𝐶, 𝐷′, 𝐸, 𝐹

𝑉2.
𝑈𝑠𝑒𝑟⊲(𝐵,𝐷′),𝑈𝑠𝑒𝑟⊲ 𝐾𝑈𝑠𝑒𝑟

−1

𝑈𝑠𝑒𝑟⊲𝑅

𝑉3.
𝑈𝑠𝑒𝑟⊲𝐸,𝑈𝑠𝑒𝑟⊲𝑅

𝑈𝑠𝑒𝑟⊲𝑚

𝑉4.
𝑈𝑠𝑒𝑟⊲(𝑚,𝑅)

𝑈𝑠𝑒𝑟⊲𝑠

𝑉5.
𝑈𝑠𝑒𝑟|≡(𝑠,𝐵)

𝑈𝑠𝑒𝑟|≡(𝐶,𝑅,𝑚)

𝑉6.
𝑈𝑠𝑒𝑟|≡(𝑅,𝑚)

𝑈𝑠𝑒𝑟|≡(𝐷′,𝐸)

𝑉7.
𝑈𝑠𝑒𝑟|≡𝐷′

𝑈𝑠𝑒𝑟|≡𝐹

𝑉8.
𝑈𝑠𝑒𝑟|≡𝐹

𝑈𝑠𝑒𝑟|≡𝐶𝑆𝑃⊲𝑟𝑘

When 𝑈𝑠𝑒𝑟 receives the ciphertext that contains the keyword, he/she exploits all

information contained in it to determine whether the re-encrypted ciphertext sent from

𝐶𝑆𝑃 has been tampered by an attacker. By formula 𝑉8, 𝑈𝑠𝑒𝑟 believes that 𝐶𝑆𝑃

holds the re-encryption key for the re-encryption of the ciphertext. Therefore, we can

infer that our scheme achieves the goal we set for phase 𝐷𝑒𝑐2.

52

Chapter 4 Key-aggregate Encryption

Handling huge loads of data that are subject to change within every second, cloud

storage services are facing the challenge of properly dealing with the problem of user

legality management while making sure that the services are conveniently user-friendly.

Ideally, the concept of attribute-based encryption (ABE) should be applied, meaning

that data should be able to be encrypted using some specific attributes before it is

uploaded to cloud, so that fine access control is possible. However, in a traditional

attribute-based encryption scheme, the user typically needs to have different attribute-

based keys for the decryption of various pieces of data downloaded, which really is a

lot of trouble. To solve this problem, the idea of key-aggregate cryptosystem (KAC)

has been brought up. With KAC, the user gets to use one single aggregate key to decrypt

data that match all the attributes specified by the user. In addition, in some cases of

cloud data usage we as users might not exactly want to share our cloud data with others

24 hours a day and for as long as it gets. Therefore, in this paper, we shall propose a

time-bound key-aggregate encryption scheme for cloud storage, together with the

results of some comparisons as well as correctness and security analyses we have made

to prove the superiority of our new scheme over related works. Not only will our new

scheme take the burden of maintaining the attribute-based keys off the user, but it will

also provide satisfactory confidentiality and security for cloud data in a more efficient

way.

53

4.1 Preliminaries

Thanks to the immense advancement of recent cloud computing technologies,

quite a number of new ways to deal with vast amounts of data have been created and

brought into our everyday lives, cloud storage service among the rest. The appearance

of cloud storage service has swiftly changed people’s common practice of bringing

USB flash drives or portable hard drives or other devices around into embracing cloud

storage space providers such as Dropbox, SkyDrive, and MEGA. Cloud storage service

surprises every beginner with the amazing convenience and freedom of easily accessing

their data wherever there is access to the Internet. Now clients of cloud storage services

include not only individual people but also businesses or other kinds of organizations,

and what is stored in cloud can range from public, totally non-sensitive data to highly

confidential information. Therefore, thorough protection of the data trusted in cloud

against any possible malicious access is crucial to the success of a cloud storage service

provider.

As cloud storage service gains its popularity, people’s choice of place to keep their

data switches from devices right at hand to some far-away storage space you do not

even know where it is, like Dropbox, Box.com, SugarSync, etc. To start using these

cloud storage services, we typically provide an account and password pair. Once logged

in, we are ready to upload our data. However, if our data is uploaded in the form of

plaintext, then anyone at the server end will have an easy chance to obtain our data and

make whatever malicious use of it they wish to. In order to prevent this from happening,

before uploading, we can have our data encrypted and thus keep it incomprehensible to

all the staff at the cloud end. Related issues may include privacy protection,

confidentiality, etc. [10, 30, 37, 38, 50, 67].

With tons and tons of data stored in cloud, another major issue is how to make sure

54

that the cloud storage service user can have easy, fast access to the part or parts of data

in need without having to download a whole warehouse of data and sorting everything

out. To achieve fine access control, some exploit the keyword search process, and others

use attribute-based encryption. Sahai and Waters were the first to propose the concept

of attribute-based encryption [55]. With attribute-based encryption, the plaintext can be

encrypted if it contains some specific attribute. Following this route, Wang et al.

proposed a hierarchical attribute-based encryption scheme for cloud storage

environments to make fine access control possible [66]. Unfortunately, traditional

attribute-based encryption schemes may not be exactly user friendly and bring the right

convenience. An example is like this: Suppose Alice encrypted some data using English,

Chinese, mathematics, science, society, and computer as attributes respectively and

then uploaded the data to cloud. One day, Bob wants to access the data with attributes

English, Chinese, mathematics, and computer. First, he sends the access requirement to

Alice. Since to each attribute there is a corresponding key, Alice then needs to respond

to Bob with the decryption keys for attributes English, Chinese, mathematics, and

computer respectively. This may not exactly be what Bob has in mind because now he

has four different keys to manage. This scenario is illustrated in Figure 5. Just imagine

if some data stored in cloud came through 1,000 different attributes. In that case, a user

who wants to access data through 500 different attributes will have to ask the data owner

for 500 separate keys, each corresponding to one attribute. Keeping those 500 keys is

of course a lot of trouble. In order to solve this problem, Chu et al. proposed a new

scheme called Key-Aggregate Cryptosystem (KAC) [19]. In Chu et al.’s scheme, Alice

does not need to return four different keys to Bob; instead, only one aggregate key is

generated for the collective attribute of English, Chinese, mathematics, and computer.

With this aggregate key, Bob can decrypt the parts of data he wishes to get. This

55

scenario is illustrated in Figure 6.

In addition, there are also times when Alice thinks opening all her data to Bob at

all times may not be a good idea. That is when a time-bound aggregate key comes in.

Since we have found no time-based aggregate key encryption mechanism proposed

among the many previous studies related, in this paper we shall offer the very first time-

bound key-aggregate encryption scheme for cloud storage. Since by nature the cloud

server is obviously not to be fully trusted, in our scheme, not only do we combine time-

bound key assignment together with key-aggregate encryption, but we also introduce

the concept of proxy re-encryption. As a result, our new scheme offers better data

Encrypt data with different attributes

and upload to cloud

Alice Bob

Chinese English Math Computer
+ + +

Computer

English
Chinese

Math

Cloud storage space (SkyDrive…)

Society

Chinese English Science Math

Computer

Send requirement for access to data through

attributes English, Chinese, mathematics, and

computer

Figure 5 How traditional attribute-based encryption works

56

security and is much more user-friendly than its predecessors. To be more specific, the

properties that our new scheme features are as follows:

1. Our scheme takes the heavy burden of managing decryption keys off the user:

In a traditional attribute-based encryption scheme, the user needs to keep

different attribute-based decryption keys for the downloading of data

previously uploaded by using different attributes. This task of key

management can be a heavy load on the user. Our scheme is capable of

relieving the user of such a burden.

2. No tamper-resistant device is required:

In order to resist collusion attacks, many time-bound key assignment schemes

have to exploit the tamper-resistant devices. In our scheme, we exploit some

public parameters instead.

3. The confidentiality of the data is guaranteed.

To prevent a malicious cloud server from tampering the ciphertext, we

empower the cloud server to re-encrypt the time-bound ciphertext for the

corresponding set of attributes. Only the qualified user can use his/her key to

decrypt the re-encrypted ciphertext.

4. Our time-bound key offers more flexibility:

The data owner may or may not want to share the data with a user at all times.

To offer this flexibility of time-bound access control, our time-bound key

design enables the data owner to set a key for the user that gives the user

permission to access the data desired within a certain period of time.

57

4.2 Related Works

4.2.1 Attribute-based Encryption

Distinct from identity-based encryption (IBE), there is a new encryption type

called attribute-based encryption (ABE). With attribute-based encryption, the plaintext

can be encrypted if it contains some specific attribute. Sahai and Waters were the first

to introduce the concept of attribute-based encryption to the world [55]. Sahai and

Waters proposed their fuzzy identity-based encryption scheme in 2005. In 2006, Goyal

proposed a new type attribute-based encryption named Key-Policy Attribute-Based

Encryption (KP-ABE). In KP-ABE, each private key is associated with an access

Send requirement for access to data with attributes

English, Chinese, mathematics, and computer

Encrypt data with different

attributes and upload to cloud

Alice Bob

English, Chinese, mathematics, and computer

Computer

English
Chinese

Math

Cloud storage space (SkyDrive…)

Society

Chinese English Science Math

Computer

Aggregate key to Bob

Figure 6 Key-aggregate encryption

58

structure that specifies which type of ciphertext the key can decrypt [29]. Then, in the

next year, Bethencount et al. proposed another new attribute-based encryption scheme

by the name of Ciphertext-Policy Attribute-Based Encryption (CP-ABE) which allows

the user to associate the access structure with specific attributes [4]. Then, in 2008,

Muller et al. extended the CP-ABE into their Distributed Attribute-Based Encryption

(DABE), which supports an adjustable, unlimited number of attribute authorities and

allows new users and authorities to join in dynamically at any time [48].

4.2.2 Time-bound Key Assignment

In some cases we want the user to have the freedom of accessing the data at any

time, but in other cases we want to put some limit to it. When the access time is to be

limited, setting a time-bound key for the user is a good idea. In 2002, Tzeng [62]

proposed a time-bound key assignment scheme, where the user can access some certain

data within a certain period of time specified by the time-bound key. To be more

specific, in Tzeng’s cheme, there is a class time-bound key 𝐾𝑖,𝑡 at time t for class 𝐶𝑖.

However, later in 2003, Yi and Ye pointed out that Tzeng's scheme was vulnerable to

collusion attacks [75]. In 2004, Chien proposed a new time-bound hierarchical key

management scheme based on a low-cost tamper-resistant device [17]. Chien's scheme

uses the hash function instead of public key cryptography and thus reduces the

computation cost effectively. Unfortunately, in 2005, Yi found that Chien's scheme was

vulnerable to collusion attacks [74]. In order to provide protection against collusion

attacks, in 2008, Bertino et al. proposed a new efficient time-bound hierarchical key

management scheme that makes use of tamper-resistant devices [3]. Then, in 2009, Sun

et al. offered proof that Bertino et al.'s scheme is indeed robust against collusion attacks

[60]. More recently in 2012, Shen et al. proposed a time-bound hierarchical access

59

control and key management scheme for the multicast system that protects the

confidential multicast data [58]. In the meantime, Chen et al. proposed an efficient time-

bound hierarchical key management scheme that can do without a tamper-resistant

device [15].

4.2.3 The Encryption Mechanism for Cloud Storage

In 2010, Wang et al. proposed a hierarchical attribute-based encryption scheme for

fine-grained access control in cloud storage. Their scheme combines a hierarchical

attribute-based encryption system and a ciphertext-policy attribute-based encryption

system, resulting in high performance, fine-grained access control, and collusion attack

resistance [66]. Yu et al. exploited ciphertext-policy attribute-based encryption and

added in proxy re-encryption to construct the first scheme that simultaneously achieves

fine access control, scalability, and data confidentiality in cloud computing [76]. In

2011, Huang et al. proposed an efficient identity-based key management mechanism

for configurable hierarchical cloud environments that gives better performance at lower

communication cost on encryption [32]. Due to the heavy loads of data kept in cloud

storage, Liu et al. pointed out some problems with Liu et al.'s efficient privacy

preserving keyword search scheme [43] and proposed a new secure and privacy

preserving keyword search scheme for cloud storage services in 2012 [44]. In the same

year, Koo et al. exploited ABE and proposed a new searchable encryption scheme

which provides efficient data retrieval for cloud storage [37]. In 2013, Fan and Hiang

proposed a variant of symmetric predicate encryption for cloud environment that

provides controllable privacy preserving search functionalities [23]. Chen et al.

proposed a new scheme to support data dynamics for remote data possession checking

in cloud environment by exploiting the Merkle hash tree [16]. Liu et al. proposed a new

60

secure data sharing scheme by the name of Mona, where the dynamic group design in

cloud environment is made possible by leveraging the group signature and employing

some dynamic broadcast encryption techniques [46]. To take care of in intra-domain

and inter-domain query requirements, Han et al. proposed an identity-based proxy re-

encryption scheme suitable for cloud computing applications [23]. Then Wang et al.

proposed a privacy-preserving public auditing scheme for a secure cloud storage system

where the third-party auditor (TPA) would not learn anything about the data contents

stored in cloud during the auditing process [64]. In 2014, in order to make fine access

control possible over searchable encrypted data, Li et al. proposed a new scheme for

hybrid clouds that offers practical keyword search where a private cloud is introduced

as an access interface between the user and the public cloud [40]. Meanwhile, Liu et al.

combined the concepts of attribute-based encryption and time-based access control to

build a time-based proxy re-encryption scheme for data sharing in cloud environment

that achieves scalable user revocation and fine access control [45].

4.3 Time-bound Key-aggregate Encryption

Before illustrating our scheme, we will go over some basic principles of bilinear

pairing [7, 34, 35] and give some complexity assumptions. Then we will get into the

details of our time-bound key-aggregate encryption scheme.

4.3.1 Bilinear Pairing

Let 𝔾1 be a cyclic additive group with prime order 𝑞, and let 𝔾2 be a cyclic

multiplicative group with prime order 𝑞, and 𝑝 is the generator of group 𝔾1. With

𝑥, 𝑦 ∈ ℤ𝑞 , we have the bilinear map 𝑒: 𝔾1 × 𝔾1 → 𝔾2 that satisfies the following

requirements:

61

 Bilinearity: For all 𝑥, 𝑦 ∈ ℤ𝑞 and 𝑃, 𝑄 ∈ 𝔾1 , 𝑒(𝑃𝑥 , 𝑄𝑦) = 𝑒(𝑃, 𝑄)𝑥𝑦 =

𝑒(𝑃𝑦 , 𝑄𝑥).

Sometimes the property of bilinearity can be alternatively expressed as

𝑒(𝑥𝑃, 𝑦𝑄) = 𝑒(𝑃, 𝑄)𝑥𝑦 = 𝑒(𝑦𝑃, 𝑥𝑄).

 Computability: For any 𝑃, 𝑄 ∈ 𝔾1, tere always exists an efficient algorithm

to compute 𝑒(𝑃, 𝑄) ∈ 𝔾2.

 Non-degeneration: 𝑒(𝑃, 𝑄) ≠ 1.

4.3.2 Complexity Assumption

The security of our new scheme is based on the following complexity assumptions:

 Discrete Logarithm Problem (DLP)

Given two elements 𝑃 and 𝑄 in 𝔾1, it is extremely difficult to find 𝑛 ∈ ℤ𝑞

such that 𝑃 = 𝑛𝑄 if 𝑛 exists.

 Computation Diffie-Hellman Problem (CDHP)

Given 𝑃, 𝑥𝑃, 𝑦𝑃 for 𝑥, 𝑦 ∈ ℤ𝑞 , it is extremely difficult to compute 𝑥𝑦𝑃.

 Bilinear Diffie-Hellman Problem (BDHP)

Given 𝑃, 𝑃𝑥 , 𝑃𝑦, 𝑃𝑧 for 𝑥, 𝑦, 𝑧 ∈ ℤ𝑞 , it is extremely difficult to compute

𝑒(𝑃, 𝑃)𝑥𝑦𝑧 ∈ 𝔾2.

4.3.3 The Proposed Scheme

In this subsection, we will propose our time-bound key-aggregate encryption

scheme inspired by Boneh et al. [8] and Chu et al. [19]. First, we will illustrate the

62

architecture of our scheme, and then we will give the details of each phase in our

scheme.

To begin with, the participants in our scheme include the cloud storage provider

(CSP), the data owner, and the user. The three parties behave as follows:

 Cloud storage provider (CSP): CSP needs to store the ciphertext and accept

requirements sent from the user. CSP also has the ability of re-encrypting the

time-bound ciphertext.

 Data owner: The data owner needs to encrypt the ciphertext and set a

corresponding class to each piece of it. The data owner also generates a time-

bound aggregate key for the user.

 User: The user needs to send a requirement to the data owner in order to get

his/her key, and then send another requirement to CSP to get the re-encrypted

ciphertext. The user then uses the time-bound aggregate key given by the data

owner to decrypt the ciphertext received.

The notations we will use throughout the presentation of our new scheme are listed

in Table 7.

63

Table 7 Notations in time-bound key-aggregate encryption

Notations Descriptions

𝑝

𝐺, 𝐺𝑇

�̂�

𝑔

𝛼, 𝛽, 𝑎, 𝑏

𝑛

𝑒𝑘

𝑧

A prime order

Bilinear groups of prime order 𝑝

Bilinear map �̂�: 𝐺 × 𝐺 → 𝐺𝑇

A generator of 𝐺

The secret random numbers, 𝛼, 𝛽, 𝑎, 𝑏 ∈ 𝑍𝑝

The maximum number of ciphertext classes

A secret value

The time line, 𝑧 < 𝑝

𝑇

𝑡

𝑡1

𝑡2

𝑥

𝑦

The maximum continuous subscription time

Current time

The initiate time of register time

The termination time of register time

The past time

The remaining time

We set 𝜆 as the total of the valid time for the user. This way, when the user

subscribes for a time period [𝑡1, 𝑡2], the variables 𝑇, 𝜆, 𝑥, 𝑦, 𝑡, 𝑡1, and 𝑡2 satisfy the

following description:

𝑡1 + 𝑥 = 𝑡 = 𝑡2 − 𝑦, 𝑥 + 𝑦 = 𝜆, 𝑡2 − 𝑡1 = 𝜆 ≤ 𝑇

𝑡1 𝑡2

𝜆

𝑥 𝑦 𝑡

Figure 7 The relationship of 𝑻, 𝝀, 𝒙, 𝒚, 𝒕, 𝒕𝟏, and 𝒕𝟐

http://cdict.net/?w=current
http://cdict.net/?w=termination

64

There are six algorithms in our scheme as follows:

 SystemSetup: Set 𝑔𝑖 = 𝑔𝛼𝑖
∈ 𝐺 for 𝑖 = 1, … , 𝑛, 𝑛 + 2, … ,2𝑛 . Then

compute 𝑇 sets of public parameters 𝐵 = {𝐵1, 𝐵2, … , 𝐵𝑇}, where each set

𝐵𝑘 includes 𝑘 + 1 keys. These 𝑘 + 1 keys as a whole are called 𝐷𝑘,𝑢 =

𝛼 + 𝑎𝑢𝑏𝑘−𝑢 , ∀𝑢 ∈ [0, 𝑘], ∀𝑘 ∈ [0, 𝑡], where 𝑢 and 𝑘 are the past time

and the total time, respectively. Now we have the system parameters

𝑝𝑎𝑟𝑎𝑚 = (𝐵, 𝑔, 𝑔1, … , 𝑔𝑛 , 𝑔𝑛+2, … , 𝑔2𝑛 , 𝑒𝑘𝑔, 𝑔𝛼).

Notice that the relationship of 𝐵, 𝐵𝑘 and 𝐷𝑘,𝑢 can be described as follows:

Assume 𝑇 = 4, there exist 𝐵 = {𝐵1, 𝐵2, 𝐵3, 𝐵4}, and each 𝐵𝑘 includes

𝑘 + 1 keys:

𝐵1 = {𝐷1,0, 𝐷1,1}

 = {𝛼 + 𝑎0𝑏1, 𝛼 + 𝑎1𝑏0}

𝐵2 = {𝐷2,0, 𝐷2,1, 𝐷2,2}

 = {𝛼 + 𝑎0𝑏2, 𝛼 + 𝑎1𝑏1, 𝛼 + 𝑎0𝑏2}

𝐵3 = {𝐷3,0, 𝐷3,1, 𝐷3,2, 𝐷3,3}

 = {𝛼 + 𝑎0𝑏3, 𝛼 + 𝑎1𝑏2, 𝛼 + 𝑎2𝑏1, 𝛼 + 𝑎3𝑏0}

𝐵4 = {𝐷4,0, 𝐷4,1, 𝐷4,2, 𝐷4,3, 𝐷4,4}

 = {𝛼 + 𝑎0𝑏4, 𝛼 + 𝑎1𝑏3, 𝛼 + 𝑎2𝑏2, 𝛼 + 𝑎3𝑏1, 𝛼 + 𝑎4𝑏0}

 KeyGen: Pick 𝛾 ∈𝑅 𝑍𝑝 , then compute the public key 𝑝𝑘 = 𝜐 = 𝑔𝛾 and

master-secret key 𝑚𝑘 = 𝛾.

 Encrypt: The data owner encrypts the message and sets a corresponding class

to each ciphertext. For a message 𝑚𝑖 ∈ 𝐺𝑇 and an index 𝑖 ∈ {1, … , 𝑛} ,

65

randomly choose 𝛽 ∈ 𝑍𝑝 , and compute the ciphertext 𝐶𝑖 =

(𝑐1, 𝑐2, 𝑐3, 𝑐4) = (𝑔𝛼𝛽, 𝑔𝛽, (𝜐𝑔𝑖)
𝛽, 𝑚𝑖 ∙ �̂�(𝑔1, 𝑔𝑛)𝛽).

 Extract: Upon receiving the requirement from the user, the data owner

generates a time-bound aggregate key for the user. For the set 𝑆 of indices

𝑗 ’s the aggregate key can be computed by 𝐾𝑆 = 𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2 ∙

∏ 𝑔𝑛+1−𝑗
𝛾

𝑗∈𝑆 . After computing 𝐾𝑆, the data owner sends it back to the user.

With this key, the user can decrypt the ciphertext desired.

 Re-encryption: Upon receiving the requirement from the user, CSP generates

a new time-bound ciphertext for the user. CSP needs to re-encrypt the stored

ciphertext. CSP computes 𝑐4
′ = 𝑐4/�̂�(𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖

𝛾
𝑗∈𝑆,𝑗≠𝑖 , 𝑐2)

𝑎𝑡𝑏𝑧−𝑡𝑒𝑘
∙

�̂�(𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑐1)
𝑎𝑡1𝑏𝑧−𝑡2𝑒𝑘

 then returns 𝐶𝑖
′ = (𝑐1, 𝑐2, 𝑐3, 𝑐4

′) to

the user as re-encrypted ciphertext.

 Decrypt: If the user decrypts the ciphertext in valid time, the user can use 𝐾𝑆

to decrypt the re-encrypted ciphertext by computing 𝑚𝑖 = 𝑐4
′ ∙ �̂�(𝐾𝑆 ∙

∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑐2)
𝐷𝑘,𝑢

 ∙ �̂�(𝑔𝑛+1, 𝑐2)𝐷𝑘,𝑢/�̂�(∏ 𝑔𝑛+1−𝑗𝑗∈𝑆 , 𝑐3)
𝐷𝑘,𝑢

∙

�̂�(𝑔𝑛+1, 𝑐2). Before computing 𝑚𝑖, the user needs to find the corresponding

𝐵𝑘 in 𝐵 to obtain 𝐷𝑘,𝑢 = 𝛼 + 𝑎𝑢𝑏𝑘−𝑢 in order to decrypt the ciphertext.

66

4.4 Security and Performance Analysis

In this section, let’s confirm the correctness of our scheme, examine how it

compares with related schemes in terms of functions, and then check the security

against some possible attacks. For the correctness analysis, we especially checked the

correctness of the decryption algorithm, and the BAN logic was also employed to check

the whole scheme.

Figure 8 Time-bound key-aggregate encryption scheme

Send requirement for access to data with

attributes English, Chinese, mathematics, and

computer

Encrypt the data with different

attributes and upload to cloud

Alice Bob

English, Chinese, mathematics, and computer

Cloud storage space (SkyDrive…)

Society

Chinese English Science Math

Computer

Send time-bound aggregate key to Bob

Re-encrypt the

ciphertext

requested by user

and then return it

to user

67

4.4.1 Correctness Analysis

4.4.1.1 Correctness of Decryption Algorithm

In the decryption algorithm, the user can use his/her time-bound key to recover

𝑚𝑖. The correctness of this algorithm can be confirmed as follows:

 𝑐4
′ ∙

�̂�(𝐾𝑆 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑐2)
𝐷𝑘,𝑢

∙ �̂�(𝑔𝑛+1, 𝑐2)𝐷𝑘,𝑢

�̂�(∏ 𝑔𝑛+1−𝑗𝑗∈𝑆 , 𝑐3)
𝐷𝑘,𝑢

∙ �̂�(𝑔𝑛+1, 𝑐2)

= 𝑐4
′

∙
�̂� ((𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2 ∙ ∏ 𝑔𝑛+1−𝑗

𝛾
𝑗∈𝑆) ∙ ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)

𝐷𝑘,𝑢

∙ �̂�(𝑔𝑛+1, 𝑔𝛽)
𝐷𝑘,𝑢

�̂�(∏ 𝑔𝑛+1−𝑗𝑗∈𝑆 , (𝜐𝑔𝑖)𝛽)
𝐷𝑘,𝑢

∙ �̂�(𝑔𝑛+1, 𝑔𝛽)

= 𝑐4
′ ∙

�̂�((𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2)∙∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝐷𝑘,𝑢

∙�̂�(∏ 𝑔𝑛+1−𝑗
𝛾

𝑗∈𝑆 ∙∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝐷𝑘,𝑢

∙�̂�(𝑔𝑛+1,𝑔𝛽)
𝐷𝑘,𝑢

�̂�(∏ 𝑔𝑛+1−𝑗𝑗∈𝑆 , (𝜐𝑔𝑖)𝛽)
𝐷𝑘,𝑢∙�̂�(𝑔𝑛+1, 𝑔𝛽)

= 𝑐4
′ ∙

�̂�(∏ 𝑔𝑛+1−𝑗
𝛾

𝑗∈𝑆 , 𝑔𝛽)
𝐷𝑘,𝑢

∙�̂�(∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝐷𝑘,𝑢

∙�̂�((𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2)∙∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝐷𝑘,𝑢

∙�̂�(𝑔𝑛+1,𝑔𝛽)
𝐷𝑘,𝑢

�̂�(∏ 𝑔𝑛+1−𝑗𝑗∈𝑆 , (𝑔𝛾)𝛽)
𝐷𝑘,𝑢∙�̂�(∏ 𝑔𝑛+1−𝑗𝑗∈𝑆 , 𝑔

𝑖
𝛽

)
𝐷𝑘,𝑢

∙�̂�(𝑔𝑛+1, 𝑔𝛽)

 = 𝑐4
′ ∙

(
�̂�(∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆 , 𝑔𝛽)

𝐷𝑘,𝑢
∙�̂�((𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2)∙∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)

𝐷𝑘,𝑢
∙�̂�(𝑔𝑛+1,𝑔𝛽)

𝐷𝑘,𝑢

�̂�(𝑔𝑛+1,𝑔𝛽)
𝐷𝑘,𝑢

)

�̂�(∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆 , 𝑔𝛽)
𝐷𝑘,𝑢∙�̂�(𝑔𝑛+1, 𝑔𝛽)

= 𝑚𝑖

∙
�̂�(𝑔1, 𝑔𝑛)𝛽

�̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝑎𝑡𝑏𝑧−𝑡𝑒𝑘

∙ �̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛼𝛽)
𝑎𝑡1𝑏𝑧−𝑡2𝑒𝑘

∙
�̂� ((𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2) ∙ ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)

𝐷𝑘,𝑢

�̂�(𝑔𝑛+1, 𝑔𝛽)

68

= 𝑚𝑖

∙
�̂� ((𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2) ∙ ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽(𝛼+𝑎𝑢𝑏𝑘−𝑢))

�̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝑎𝑡𝑏𝑧−𝑡𝑒𝑘

∙ �̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛼𝛽)
𝑎𝑡1𝑏𝑧−𝑡2𝑒𝑘

= 𝑚𝑖

∙
�̂� ((𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2) ∙ ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛼𝛽) ∙ �̂� ((𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2) ∙ ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽𝑎𝑢𝑏𝑘−𝑢

)

�̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝑎𝑡𝑏𝑧−𝑡𝑒𝑘

∙ �̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛼𝛽)
𝑎𝑡1𝑏𝑧−𝑡2𝑒𝑘

= 𝑚𝑖

∙
�̂�(𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖

𝛾
𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛼𝛽)

𝑒𝑘𝑎𝑡1𝑏𝑧−𝑡2

∙ �̂�(𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
(𝑒𝑘𝑎𝑡1𝑏𝑧−𝑡2)(𝑎𝑢𝑏𝑘−𝑢)

�̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝑎𝑡𝑏𝑧−𝑡𝑒𝑘

∙ �̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛼𝛽)
𝑎𝑡1𝑏𝑧−𝑡2𝑒𝑘

= 𝑚𝑖

∙
�̂�(𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖

𝛾
𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛼𝛽)

𝑒𝑘𝑎𝑡1𝑏𝑧−𝑡2

∙ �̂�(𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝑎𝑡𝑏𝑧−𝑡𝑒𝑘

�̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝑎𝑡𝑏𝑧−𝑡𝑒𝑘

∙ �̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛼𝛽)
𝑎𝑡1𝑏𝑧−𝑡2𝑒𝑘

= 𝑚𝑖

Note that according to the relationship of 𝑇, 𝜆, 𝑥, 𝑦, 𝑡, 𝑡1, and 𝑡2, we can get 𝑡 =

𝑡2 − 𝑦. Consequently, we can derive 𝑎(𝑡1+𝑢)𝑏(𝑧−𝑡2+𝑘−𝑢) = 𝑎𝑡𝑏(𝑧−𝑡2+𝑦) = 𝑎𝑡𝑏𝑧−𝑡.

4.4.1.2 BAN Logic Check

The BAN logic [11, 72] is a well-accepted method to analyze the correctness of

cryptographic protocols. To apply the BAN logic, we have to define some notations,

goals and assumptions of our scheme.

 Notations

Here are the syntax and notations of the BAN logic. 𝐴 and 𝐵 are the specific

participators, and 𝑋 is the formula (statement). There are some rules as follows [11,

72]:

69

15. 𝐴|≡𝑋 means 𝐴 believes the formula 𝑋 is ture.

16. 𝐴|≡ 𝐵 means 𝐴 believes 𝐵’s action.

17. 𝐴|⟹𝑋 means 𝐴 has complete control over the formula 𝑋.

18. 𝐴 ⊲ 𝑋 means 𝐴 holds or sees the formula 𝑋.

19. #(𝑋) means the formula 𝑋 is fresh.

20. 𝐾𝐴
⟼

𝐴 means 𝐾 is the public key for 𝐴 and 𝐾𝐴
−1 is the private key for A.

21.
𝑅𝑢𝑙𝑒 1

𝑅𝑢𝑙𝑒 2
 means 𝑅𝑢𝑙𝑒 2 can be derived from 𝑅𝑢𝑙𝑒 1.

 Goals

There are three roles interacting in our scheme, namely the data owner (𝑂𝑤𝑛𝑒𝑟),

the cloud service provider (𝐶𝑆𝑃) and the user (𝑈𝑠𝑒𝑟). In the language of the BAN logic,

our scheme is to achieve the two goals as follows:

𝐺1. 𝑈𝑠𝑒𝑟|≡𝐾𝑈𝑠𝑒𝑟
−1

𝐺2. 𝑈𝑠𝑒𝑟|≡𝑚𝑖

Because the user needs to use his/her secret key to decrypt 𝐶𝑖
′ to recover 𝑚𝑖, in

𝐺1 the user should believe that the decryption key is truly sent from the data owner.

Then, as 𝐺2 indicates, the user should believe that the 𝑚𝑖 that he/she decrypts by

using his/her key is true.

 Assumptions

With the goals set, the assumptions used to analyze our scheme can be stated as

follows:

70

𝐴1. 𝑂𝑤𝑛𝑒𝑟|⟹𝐾𝑂𝑤𝑛𝑒𝑟
−1

𝐴2. 𝑈𝑠𝑒𝑟|≡𝑂𝑤𝑛𝑒𝑟 ⊲ 𝐾𝑂𝑤𝑛𝑒𝑟
−1

𝐴3. 𝑈𝑠𝑒𝑟 ⊲ 𝐾𝑈𝑠𝑒𝑟
−1

𝐴4. 𝑈𝑠𝑒𝑟|≡𝐵𝑖

Since the set 𝐵 is protected by the secret values 𝛼, 𝑎, and 𝑏 , the user should

believe that 𝐵 cannot be tampered by an attacker.

 Correctness of Scheme

Now we are ready to use the BAN logic to confirm the correctness of our scheme:

Message 1: 𝐶𝑆𝑃 ⟶ 𝑈𝑠𝑒𝑟: 𝐶𝑖
′ = (𝑐1, 𝑐2, 𝑐3, 𝑐4

′)

𝑉1. 𝑈𝑠𝑒𝑟 ⊲ 𝐶𝑖
′

𝑉2.
𝑈𝑠𝑒𝑟⊲𝐶𝑖

′ ,𝐾𝑈𝑠𝑒𝑟
−1 ,𝑈𝑠𝑒𝑟|≡𝐵𝑖

𝑈𝑠𝑒𝑟⊲𝑚𝑖

𝑉3.
𝑈𝑠𝑒𝑟|≡𝑂𝑤𝑛𝑒𝑟⊲𝐾𝑂𝑤𝑛𝑒𝑟

−1 ,𝑈𝑠𝑒𝑟⊲𝑚𝑖

𝑈𝑠𝑒𝑟|≡𝐾𝑈𝑠𝑒𝑟
−1

𝑉4.
𝑈𝑠𝑒𝑟|≡𝐾𝑈𝑠𝑒𝑟

−1

𝑈𝑠𝑒𝑟|≡𝑚𝑖

When CSP sends 𝐶𝑖
′ = (𝑐1, 𝑐2, 𝑐3, 𝑐4

′) to the user, the user can hold 𝐶𝑖
′ =

(𝑐1, 𝑐2, 𝑐3, 𝑐4
′). In 𝑉2, there are 𝑇 sets in 𝐵, and not only does the user believe 𝐵𝑖

but he/she also holds 𝐶𝑖
′ and 𝐾𝑠. So, he/she can recover 𝑚𝑖 by exploiting 𝐵, 𝐶𝑖

′, and

𝐾𝑠. Since 𝐾𝑠 is generated by using the data owner’s master-secret key, the user can use

𝐾𝑠 to recover 𝑚𝑖 and therefore can believe that 𝐾𝑠 is efficacious. Then, since 𝑚𝑖 is

obtained through the decryption process using the key 𝐾𝑠, the user believes that 𝑚𝑖 is

what he/she wishes to obtain. By formulas 𝑉3 and 𝑉4, the user believes 𝐾𝑠 and 𝑚𝑖,

and so the goals of our scheme are achieved.

71

4.4.2 Comparisons

In this subsection, we shall compare our new scheme with Han et al.’s [30], Koo

et al.’s [37], Li et al.’s [40], Liu et al.’s [45], and Chu et al.'s [19] scheme. In our table

of comparison results, namely Table 2, the five terms AttEn, Time-bound, KeyAgg,

Re-encrypt, and Confidentiality are used to indicate attribute-based encryption, time-

bound key assignment, key-aggregate encryption, proxy re-encryption, and data

confidentiality, respectively.

Data confidentiality is an important requirement any encryption scheme applied

in any field should satisfy. In Table 8 we gladly see that all of the schemes satisfy this

requirement. As for attribute-based encryption, it helps in data categorization and is the

key to fine access control. Unfortunately, since Han et al.'s scheme is based on identity-

based encryption, it cannot provide fine access control. Among the schemes compared,

Liu et al.’s scheme, with attribute-based encryption and time-bound key assignment

combined, satisfies four of the five requirements. However, due to the lack of key

aggregation, in Liu et al.’s scheme, the user needs more than one key for different

attributes. As Table 8 reveals, our scheme is the only scheme to satisfy all five

requirements.

72

Table 8 Comparison results among related works

 AttEn Time-bound KeyAgg Re-encrypt Confidentiality

Han et al. × × × ○ ○

Koo et al. ○ × × × ○

Li et al. ○ × × × ○

Liu et al. ○ ○ × ○ ○

Chu et al. ○ × ○ × ○

Our scheme ○ ○ ○ ○ ○

AttEn : attribute-based encryption

Time-bound : time-bound key assignment

KeyAgg : key-aggregate encryption

Re-encrypt : proxy re-encryption

Confidentiality : data confidentiality

4.4.3 Security Analysis

In general, there are two ways to analyze the security of a scheme: formal analysis

and heuristic analysis. In this study, we followed the route of heuristic analysis.

1. System security is ensured by protected α.

In our scheme, α plays an important role. If α leaked out, the system would

be exposed to danger. To keep an attacker from obtaining α through

analyzing the public parameter 𝐷𝑘,𝑢, we make 𝐷𝑘,𝑢 = 𝛼 + 𝑎𝑢𝑏𝑘−𝑢 so any

attempt of exploiting the Euclidean algorithm will be in vain.

73

2. Proxy re-encryption ensures data confidentiality.

CSP has no way to obtain 𝑚𝑖 by analyzing the ciphertext. CSP needs to use

a time-based parameter (𝑎𝑡𝑏𝑧−𝑡) to re-encrypt 𝐶𝑖 before sending it to the

user.

3. Only the legitimate user can decrypt the re-encrypted ciphertext.

Since CSP has had the ciphertext re-encrypted by using the time-based

parameter (𝑎𝑡𝑏𝑧−𝑡), only the legitimate user with the right aggregate key can

decrypt the ciphertext, and this can only be done within the time interval

[𝑡1, 𝑡2] because the aggregate key expires after the time limit.

4. CDHP and BDHP offer protection against collusion attacks.

If some dishonest users hold the same attribute but different prescription of

time-bound aggregate key or the same prescription but different attribute of

time-bound aggregate key, they do not have the ability to exploit each key to

obtain the data owner’s master secret key 𝑚𝑘 = 𝛾 and time parameter

𝑎𝑡1 𝑏𝑧−𝑡2 𝑒𝑘 because of the protection of CDHP and BDHP. Therefore, no

user can decrypt more than the data they are entitled to.

5. The user can verify whether or not the ciphertext has been tampered.

The moment the user successfully recovers the ciphertext with his/her time-

bound aggregate key, the time-bound ciphertext proves to be the real thing.

This is because only the real CSP has the ability to re-encrypt the ciphertext

within the time limit.

74

6. The time parameter offers protection against the ciphertext-only attack

Since each time-bound ciphertext has a unique time parameter 𝑎𝑡1𝑏𝑧−𝑡2 𝑒𝑘,

there is no way an attacker can analyze the ciphertext to get the key or the

plaintext.

75

Chapter 5 Conclusions

In this study, we proposed three scheme for cloud storage service. In Chapter 2,

Since Boneh et al. offered their concept of public key encryption with keyword search

(PEKS), many researchers have extended it to various PEKS schemes such as the secure

channel-free public key encryption scheme with keyword search (SCF-PEKS), the

efficient privacy-preserving keyword search scheme (EPPKS), the trapdoor-

indistinguishable public key encryption scheme with keyword search (TI-PEKS) and

so on. We have proposed a secure trapdoor-indistinguishable public key encryption

scheme with keyword search. Using a public channel, the proposed scheme is capable

of keeping the CSP from being tricked by an attacker sending in fake ciphertext.

In Chapter 3, we have presented a searchable hierarchical conditional proxy re-

encryption scheme for cloud storage services. Not only does our new scheme support

hierarchical proxy re-encryption but it also allows CSP to do keyword searching on the

encrypted data. If a new keyword is added, our scheme can exploit the current re-

encryption key to generate a new re-encryption key for the newly added keyword. The

correctness of our new scheme has been proven by a BAN logic examination.

Compared with similar schemes, our scheme shows superiority in terms of function,

performance, and security. So far, quite a number of new schemes including ours can

support the generation of new re-encryption keys for when new keywords are added. In

the future, we hope to develop a new re-encryption key that can handle keyword

reduction.

In Chapter 4, we have proposed the first time-bound key-aggregate encryption

scheme for cloud storage. With our scheme, the data owner can finely adjust the user’s

range and time of data access. In addition, our scheme is very user-friendly because the

76

user only has to keep an aggregate key. Our correctness check, feature comparison, and

security analysis have also shown the superiority of our scheme over related works.

77

References

[1] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy re-encryption

schemes with applications to secure distributed storage,” Proceedings of the 12th

Annual Network and Distributed System Security Symposium, pp. 29-44, 2005.

[2] J. Baek, R. Safiavi-Naini, and W. Susilo, “Public key encryption with keyword

search revisited,” Proceedings of the 8th International Conference on

Computational Science and Its Applications (ICCSA’08), vol. 5072, pp. 1249-1259,

2008.

[3] E. Bertino, S. Ning, and S. S. Wagstaff, “An efficient time-bound hierarchical key

management scheme for secure broadcasting,” IEEE Transactions on Dependable

and Secure Computing, vol. 5, no. 2, pp. 65-70, 2008.

[4] J. Bethencourt, A. Sahai, B. Waters, “Ciphertext-policy attribute-based encryption,”

Proceedings of the IEEE Symposium on Security and Privacy, pp. 321–334, 2007.

[5] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic proxy

cryptography,” Proceedings of EUROCRYPT 1998, Lecture Notes in Computer

Science, vol. 1403, pp. 127-144, 1998.

[6] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public key encryption

with keyword search,” Proceedings of 2004 International Conference on the

Theory and Applications of Cryptographic Techniques (EUROCRYPT’04), vol.

3027, pp. 506-522, 2004.

[7] D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing,”

Cryptology — CRYPTO 2001, Lecture Notes in Computer Science, vol. 2139, pp.

213-229, 2001.

[8] D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast encryption with

78

short ciphertexts and private keys,” Lecture Notes in Computer Science, vol. 3621,

pp. 258-275, 2005.

[9] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on encrypted data,”

Proceedings of TCC 2007, Lecture notes in computer science, vol. 4392, pp. 535-

554, 2007.

[10] S. Bugiel, S. Nűurnberger, A. Sadeghi, and T. Schneider, “Twin clouds: an

architecture for secure cloud computing (extended abstract),” Proceedings of the

Workshop on Cryptography and Security in Clouds (WCSC 2011), pp. 1-11, 2011.

[11] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,” ACM

Transactions Computer Systems, vol. 8, no. 1, pp. 18-36, 1990.

[12] R. Canetti and S. Hohenberger, “Chosen-ciphertext secure proxy re-encryption,”

Proceedings of the 14th ACM Conference on Computer and Communications

Security, ACM New York, NY, USA, pp. 185-194, 2007.

[13] Y. C Chang and M. Mitzenmacher, “Privacy preserving keyword searches on

remote encrypted data,” Proceedings of ACSN 2005, Lecture notes in computer

science, vol. 3531, pp. 442-455, 2005.

[14] Z. Chen, C. Wu, D. Wang, and S. Li, “Conjunctive keywords searchable

encryption with efficient pairing, constant ciphertext and short trapdoor,” Lecture

Notes in Computer Science, vol. 7299, pp. 176-189, 2012.

[15] C. M. Chen, T. Y. Wu, B. Z. He, and H. M. Sun, “An efficient time-bound

hierarchical key management scheme without tamper-resistant devices,”

Proceedings of the IEEE International Conference on Computing, Measurement,

Control and Sensor Network (CMCSN), pp. 285-288, 2012.

[16] L. Chen, S. Zhou, X. Huang, and L. Xu, “Data dynamics for remote data possession

checking in cloud storage,” Computers and Electrical Engineering, vol. 29, no. 7,

79

pp. 2413-242, 2013.

[17] H. Y. Chien, “Efficient time-bound hierarchical key assignment scheme,” IEEE

Transactions on Knowledge and Data Engineering, vol. 16, no. 10, pp. 1301-1304,

2004.

[18] S. Chow, J. Weng, Y. Yang, and R. Deng, “Efficient unidirectional proxy re-

encryption,” Proceedings of AFRICACRYPT 2010, Lecture Notes in Computer

Science, vol. 6055, pp. 316-332, 2010.

[19] C. K. Chu, Sherman S.M. Chow, W. G. Tzeng, J. Zhou, and Robert H. Deng, “Key-

aggregate cryptosystem for scalable data sharing in cloud storage,” IEEE

Transactions on Parallel and Distributed Systems, vol. 25, no. 2, pp. 468-477, 2014.

[20] C. Chu and W. Tzeng, “Identity-based proxy re-encryption without random

oracles,” Proceedings of ISC 2007, Lecture Notes in Computer Science, vol. 4779,

pp. 189-202, 2007.

[21] C. Chu, J. Weng, S. Chow, J. Zhou, and R. Deng, “Conditional proxy broadcast

reencryption,” Proceedings of ACISP 2009, Lecture Notes in Computer Science,

vol. 5594, pp. 327-342, 2009.

[22] R. Deng, J. Weng, S. Liu, and K. Chen, “Chosen-cipertext secure proxy re-

encryption without pairings,” Proceedings of CANS 2008, Lecture Notes in

Computer Science, vol. 5339, pp. 1-17, 2008.

[23] C. I. Fan and S. Y. Huang, “Controllable privacy preserving search based on

symmetric predicate encryption in cloud storage,” Future Generation Computer

Systems, vol. 29, no. 7, pp. 1716-1724, 2013.

[24] L. Fang, W. Susilo, C. Ge, and J. Wang, “Hierarchical conditional proxy re-

encryption,” Computer Standards & Interfaces, vol. 34, no. 4, pp. 380-389, 2012.

[25] L. Fang, W. Susilo, and J. Wang, “Anonymous conditional proxy re-encryption

80

without random oracle,” Lecture Notes in Computer Science, vol. 5848, Springer,

pp. 47-60, 2009.

[26] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search over

encrypted data,” Lecture Notes in Computer Science, vol. 3089, pp. 31-45, 2004.

[27] M. Green and G. Ateniese, “Identity-based proxy re-encryption,” Proceedings of

ACNS 2007, Lecture Notes in Computer Science, vol. 4521, pp. 288-306, 2007.

[28] C. Gu and Y. Zhu, “New efficient searchable encryption schemes from bilinear

pairings,” International Journal of Network Security, vol. 10, no. 1, pp. 25-31, 2010.

[29] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-

grained access control of encrypted data,” Proceedings of 13th ACM Conf.

Computer and Comm. Security, pp. 89-98, 2006.

[30] J. G. Han, W. Susilo, and Y. Mua, “Identity-based data storage in cloud computing,”

Future Generation Computer Systems, vol. 29, no. 3, pp. 673-681, 2013.

[31] S. T. Hsu, C. C. Yang, and M. S. Hwang, “A study of public key encryption with

keyword search,” International Journal of Network Security, vol. 15, no. 2, pp. 71-

79, 2013.

[32] J. Y. Huang, I-En Liao, and C. K. Chiang, “Efficient identity-based key

management for configurable hierarchical cloud computing environment,”

Proceedings of the IEEE 17th International Conference on Parallel and Distributed

Systems (ICPADS), pp. 833-887, 2011.

[33] I. R. Jeong, J. O. Kwon, D. Hong, and D. H. Lee, “Constructing PEKS schemes

secure against keyword guessing attacks is possible?,” Computer Communications,

vol. 32, no. 2, pp. 394-396, 2009.

[34] A. Joux, “A one round protocol for tripartite Diffie-Hellman,” Journal of

Cryptology, vol. 17, no. 4, pp. 263-276, 2004.

81

[35] A. Joux and K. Nguyen, “Separating decision Diffie–Hellman from computational

Diffie–Hellman in cryptographic groups,” Journal of Cryptology, vol. 16, no. 4,

pp.239-247, 2003.

[36] D. Khader, “Public key encryption with keyword search based on k-resilient IBE,”

in Computational Science and Its Application-ICCSA 2006, vol. 3982 of Lecture

Notes in Computer Science, pp. 298-308, 2006.

[37] D. Y. Koo, J. B. Hur, and H. S. Yoon, “Secure and efficient data retrieval over

encrypted data using attribute-based encryption in cloud storage,” Computers &

Electrical Engineering, vol. 39, no. 1, pp. 34-46, 2013.

[38] C. C. Lee, P. S. Chung, and M. S. Hwang, “A survey on attribute-based encryption

schemes of access control in cloud environments,” International Journal of

Network Security, vol. 15, no. 4, pp. 231-240, 2013.

[39] C. C. Lee, S. T. Hsu, and M. S. Hwang, “A study of conjunctive keyword

searchable schemes,” International Journal of Network Security, vol. 15, no. 5, pp.

311-320, 2013.

[40] J. W. Li, J. Li, X. F. Chen, Z. L. Liu, and C. F. Jia, “Privacy-preserving public

auditing for secure cloud storage,” Future Generation Computer Systems, vol. 30,

no. 11, pp. 98-106, 2014.

[41] J. Li, Q. Wang, C. Wang, K. R. N. Cao, and W. Lou, “Fuzzy keyword search over

encrypted data in cloud computing,” Proceedings of the 29th conference on

Information communications (INFOCOM’10), San Diego, California, USA. IEEE,

pp. 1-5, 2010.

[42] B. Libert and D. Vergnaud, “Unidirectional chosen-ciphertext secure proxy

reencryption,” Proceedings of PKC 2008, Lecture Notes in Computer Science, vol.

4939, pp. 360-379, 2008.

82

[43] Q. Liu, G. Wang, and J. Wu, “An efficient privacy preserving keyword search

scheme in cloud computing,” Proceedings of the 2009 International Conference on

Computational Science and Engineering, pp.715-720, 2009.

[44] Q. Liu, G. Wang, and J. Wu, “Secure and privacy preserving keyword searching

for cloud storage services,” Journal of Network and Computer Applications, vol.

35, no. 3, pp. 927-933, 2012.

[45] Q. Liu, G. J. Wang, and J. Wu, “Time-based proxy re-encryption scheme for secure

data sharing in a cloud environment,” Information Sciences, vol. 258, no. 24, pp.

355-370, 2014.

[46] X. F. Liu, Y. Q. Zhang, B. Y. Wang, and J. B. Yan, “Mona: secure multi-owner

data sharing for dynamic groups in the cloud,” IEEE Transactions on Parallel and

Distributed Systems, vol. 24, no. 6, pp. 1182-1191, 2013.

[47] T. Matsuda, R. Nishimaki, and K. Tanaka, “CCA proxy re-encryption without

bilinear maps in the standard model,” Proceedings of PKC 2010, Lecture Notes in

Computer Science, vol. 6056, pp. 261-278, 2010.

[48] S. Muller, S. Katzenbeisser, and C. Eckert, “Distributed attribute-based

encryption,” Proceedings of the International Conference on Information Security

and Cryptology, pp. 20-36, 2008.

[49] D. J. Park, K. Kim, and P. J. Lee, “Public key encryption with conjunctive field

keyword search,” Lecture Notes in Computer Science, vol. 3325, pp. 73-86, 2005.

[50] Y. Peng, W. Zhao, F. Xie, Z. H. Dai, Y. Gao, and D. Q. Chen, “Secure cloud

storage based on cryptographic techniques,” The Journal of China Universities of

Posts and Telecommunications, vol. 19, no. 2, pp. 182-189, 2012.

[51] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee, “Improved searchable public key

encryption with designated tester,” ASIACCS '09 Proceedings of the 4th

83

International Symposium on Information, Computer, and Communications security,

pp. 376-379, 2009.

[52] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee, “Trapdoor security in a searchable

public-key encryption scheme with a designated tester,” The Journal of Systems and

Software, vol. 83, no. 5, pp. 763-771, 2010.

[53] H. S. Rhee, W. Susilo, and H. J. Kim, “Secure searchable public key encryption

scheme against keyword guessing attacks,” IEICE Electronics Express, vol. 6, no.

5, pp. 237-243, 2009.

[54] E. K. Ryu and T. Takagi, “Efficient conjunctive keyword-searchable encryption,”

in Advanced Information Networking and Application Workshops, 2007, AINAW

'07. 21st International Conference on, vol. 1, pp. 409-414, 2007.

[55] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” Lecture Notes in

Computer Science, vol. 3494, pp. 457-473, 2005.

[56] J. W. Seo, D. H. Yumb, and P. J. Lee, “Proxy-invisible CCA-secure type-based

proxy re-encryption without random oracles,” Theoretical Computer Science, vol.

491, pp. 83-93, 2013.

[57] V.R.L. Shen, W. C. Huang, and T. L. Chen, “A time- bound hierarchical access

control for multicast systems,” Proceedings of the 2012 International Conference

on Machine Learning and Cybernetics, pp.543-548, 2012.

[58] E. Shi, J. Bethencourt, T. H. Chan, D. Song, and A. Perrig, “Multi-dimensional

range query over encrypted data,” Proceedings of IEEE symposium on security and

privacy, pp. 350-364, 2007.

[59] D. Song, D. Wagner, and A. Perrig, "Practical techniques for searches on encrypted

data," Proceedings of the 2000 IEEE Symposium on Security and Privacy, pp.44-

55, 2000.

84

[60] H. M. Sun, K. H. Wang, and C. M. Chen, “On the security of an efficient time-

bound hierarchical key management scheme,” IEEE Transactions on Dependable

and Secure Computing, vol. 6, no. 2, pp. 159-160, 2009.

[61] Q. Tang, “Type-based proxy re-encryption and its construction,” Proceedings of

INDOCRYPT 2008, Lecture Notes in Computer Science, vol. 5365, pp. 130-144,

2008.

[62] W. G. Tzeng, “A time-bound cryptographic key assignment scheme for access

control in a hierarchy,” IEEE Transactions on Knowledge and Data Engineering,

vol. 14, no. 1, pp. 182-188, 2002.

[63] S. S. Vivek, S. S. D. Selvi, V. Radhakishan, and C. P. Rangan,” Conditional proxy

re-encryption—a more efficient construction,” Proceedings of CNSA 2011,

Communications in Computer and Information Science, vol. 196, pp. 502-512, 2011.

[64] C. Wang, Sherman S.M. Chow, Q. Wang, K. Ren, and W. J. Lou, “Privacy-

preserving public auditing for secure cloud storage,” IEEE Transactions on

Computers, vol. 62, no. 2, pp. 362-375, 2013.

[65] G. Wang, Q. Liu, and J. Wu, “Achieving fine-grained access control for secure

data sharing on cloud servers,” Concurrency and Computation: Practice and

Experience, vol. 23, no. 12, pp. 1443-1464, 2011.

[66] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-

grained access control in cloud storage services,” Proceedings of the 17th ACM

Conference on Computer and Communications Security, pp. 735-737, 2010.

[67] Q. J. Wang, Q. Liu, J. Wu, and M. Y. Guo, “Hierarchical attribute-based

encryption and scalable user revocation for sharing data in cloud servers,”

Computers & Security, vol. 30, no. 5, pp. 320-331, 2011.

[68] A. Weiss, “Computing in the clouds,” Networker, vol. 11, no. 4, pp. 16-25, 2007.

85

[39] J. Weng, M. Chen, Y. Yang, R. Deng, K. Chen, and F. Bao, “CCA-secure

unidirectional proxy re-encryption in the adaptive corruption model without

random oracles,” SCIENCE CHINA Information Sciences, vol. 53, no.3, pp. 593-

606, 2010.

[70] J. Weng, R. H. Deng, C. Chu, X. Ding, and J. Lai, “Conditional proxy re-

encryption secure against chosen-ciphertext attack,” Proceedings of the 4th

International Symposium on ACM Symposium on Information, Computer and

Communications Security (ASIACCS 2009), pp. 322-332, 2009.

[71] J. Weng, Y. Yang, Q. Tang, R. H. Deng, and F. Bao, “Efficient conditional proxy

reencryption with chosen-ciphertext security,” Proceedings of the 12th

International Conference on Information Security (ISC 2009), pp. 151-166, 2009.

[72] Jan Wessels, “Application of BAN-logic,” CMG FINANCE B.V., 19 April 2001.

[73] H. M. Yang, C. X. Xu, and H. T. Zhao, “An efficient public key encryption with

keyword scheme not using pairing,” in 2011 First International Conference on

Instrumentation, Measurement, Computer, Communication and Control, pp. 900-

904, 2011.

[74] X. Yi, “Security of Chien’s efficient time-bound hierarchical key assignment

scheme,” IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 9,

pp. 1298-1299, 2005.

[75] X. Yi and Y. Ye, “Security of Tzeng’s time-bound key assignment scheme for

access control in a hierarchy,” IEEE Transactions on Knowledge and Data

Engineering, vol. 15, no. 4, pp. 1054-1055, 2003.

[76] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-

grained data access control in cloud computing,” Proceedings of the IEEE

INFOCOM, pp. 1-9, 2010.

86

[77] Y. Zhao, X. Chen, H. Ma, Q. Tang, and H. Zhu, “A new trapdoor-indistinguishable

public key encryption with keyword search,” Journal of Wireless Mobile Networks,

Ubiquitous Computing, and Dependable Applications, vol. 3, no. 1/2, pp. 72-81,

2012.

