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中文摘要 

隨著網際網路日漸發展與成長，許多的應用相應而生，而近幾年受到矚目的

便是雲端運算。由於他強大的架構方式以及運算能力，使得各種應用相應而生，

雲端儲存服務便為其中一項。回歸雲端運算的本質，其依舊需要倚靠網路進行資

料的傳輸，而在這傳輸的過程中並非完全安全，例如在傳輸的過程中，非法使用

者攔截重要的資訊、偽造合法使用者的身分進行通訊或是偽造密文等。因此，如

何確保使用者在使用雲端儲存服務時能夠保有隱私並正確的儲存及接受資訊是

個重要的議題。在近幾年研究中，許多學者研究如何讓使用者更方便的使用雲端

儲存環境並且讓資料更安全的被傳輸以及儲存，例如：基於 ID(identity)的金

鑰管理方案、階層式基於屬性的加密方案、隱私維護的稱謂語加密方案、隱私維

護的關鍵字搜尋方案等。這些方法提供使用者安全及便利的雲端儲存環境，不但

保障了資訊與使用者的隱私外，也減輕了使用者的負擔。 

在本論文中，我們將分析近幾年應用於雲端儲存服務的研究，包含了關鍵

字搜尋、代理重新加密及以屬性為基礎的資料加密等，並基於雙線性映射函數

的數學原理上提出新的方法。根據安全性與特性的分析，我們的方法比過去的

研究更為安全且更能應用於實際環境中。 

 

關鍵字：雲端運算、雲端儲存、關鍵字搜尋、雙線性映射函數、時效性 
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ABSTRACT 

With the progression and growth of Internet, many applications have been 

developing based on Internet. The most popular application is cloud computing. 

Because of its strong architectural and high computing performance, many applications 

have been developing and cloud storage service is one of them. Back the essence of 

cloud computing, it still to rely on the Internet to transfer the data. It is not secure during 

the procedure of transfer data, for example: the attacker will intercept the important 

information during the procedure, forge identity of legitimate users to join 

communication or forge the ciphertext. Therefore, how to ensure the privacy of the user 

and access the data correctly in cloud storage service is an important issue. In recent 

years, many researchers focus on how to use the cloud storage service more secure and 

convenient for the data and the user, for example, identity-based key management, 

hierarchical attribute-based encryption scheme, and controllable privacy preserving 

search based on symmetric predicate encryption etc. These schemes provide the secure 

and convenient cloud storage environment for the user, it not only guarantee the privacy 

of data and user, but also reduce the burden for user. 

In this study, we will analyze the researches of recent years which applied to cloud 

storage services, and these researches contain the keyword search scheme, proxy re-

encryption scheme and attribute-based encryption. Based on bilinear pairing, we 

present some new schemes. According to the analyses of security and properties, our 

method is more secure than previous researches and more flexible in a practical 

environment. 

Keywords: Cloud computing, Cloud storage, Keyword search, Bilinear pairing, Time-

bound  
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Chapter 1  Introduction 

1.1 Research Motivation 

Technology grows so as to satisfy our needs, and our everyday behavior patterns 

are shaped by the growth of technology. This applies to people’s habit of data storage. 

Not long ago, people were still keeping their data in flash drives and portable hard 

drives, enjoying the convenience those “advanced” handy little devices brought rather 

than storing everything in the computer itself. Nowadays, with the rapid development 

of cloud computing technologies, many yet more advanced applications have begun to 

surface, cloud storage service among the rest. According to Wikipedia, cloud storage 

can be defined as a model of data storage where the digital data is stored in logical pools, 

the physical storage can usually span multiple servers, and the physical environment is 

typically owned and managed by a hosting company. The cloud storage service provider 

has the responsibility of keeping the data available and accessible to the client at any 

time and securing the data stored in the cloud against any form of attack. So, speaking 

of data storage, instead of flash drives and portable hard drives, more and more people 

now will think of cloud storage services such as Dropbox, SkyDrive, and MEGA. With 

everything saved in the cloud, people can readily access their data anytime and 

anywhere using any device as long as that device gets online. However, as far as data 

security is concerned, Edward Snowden pointed out that popular consumer Internet 

services like Dropbox are “hostile to privacy”. As more and more sensitive data are 

trusted to cloud storage, information security becomes a bigger and bigger issue. Or, to 

put it another way, whichever cloud storage service provider can offer a better solution 

to the data security problem will surely have a huge advantage over others because 
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cloud storage users will not trust their sensitive data to a service provider otherwise.  

Indeed, cloud data security, privacy, and confidentiality protection has become a 

major focus of research [1]. In 2010, Wang et al. [66] and Yu et al. [76] exploited the 

concept of attribute-based encryption and proposed a high performance fine access 

control scheme with collusion resistance and a fine-grained, scalable data access control 

scheme with data confidentiality for cloud computing, respectively. Then in 2011 

Huang et al. proposed an efficient identity-based key management scheme for 

configurable hierarchical cloud environment that offers high performance at low 

communication costs on encryption [32].  

On the other hand, with tons and tons of data stored in the cloud, how the user can 

have easy access to some specific data desired is also a major concern. In the past, there 

used to be two ways to retrieve the desired data from the cloud [23]. The first and most 

straightforward way was for the user to download everything stored in the cloud and 

then decrypt all the data and then search the whole thing for the part or parts of data 

desired. The second way was for the user to send a secret key to the cloud server, who 

then could use that secret key to decrypt and find the desired data for the user. 

Unfortunately, just as it sounds, the first way is a lot of trouble for the user. As for the 

second, it is nothing better because serious security problems can arise given that there 

is always a possibility that the cloud server, now holding the user’s secret key, is a 

malicious server ready to do something evil.  

Keyword search is a solution to the above problems. The concept of keyword 

search through encrypted data was proposed by Song et al. in 2000 [59]. In a keyword 

search scheme, people can use a keyword to search through encrypted data and find the 

part or parts of data previously encrypted by using that keyword. This way, no 

information will leak out during the keyword search process, and the downloading and 
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decryption will only involve the part or parts the user wishes to access. So far, quite a 

lot of research endeavors have been devoted to the development of cloud storage 

keyword search technologies [14, 26, 28, 33, 49, 54]. In 2004, Boneh et al. [7] proposed 

a scheme called public key encryption with keyword search (PEKS). Then, in 2008, 

Baek et al. extended Boneh et al.’s PEKS into a secure channel-free public key 

encryption scheme with keyword search (SCF-PEKS) [2] where the secure channel 

between the server and the user is removed to reduce the cost. After these studies, 

researchers have been working on different keyword search mechanisms. For example, 

in 2009, Liu et al. [43] offered an efficient privacy-preserving keyword search scheme 

(EPPKS) that can be viewed as an improved version of PEKS. Then, in 2011, Li et al. 

proposed another type of keyword search called fuzzy keyword search [41]. In 2012, 

Liu et al. [44] improved Liu et al.’s EPPKS [43] into a secure, privacy-preserving 

keyword search (SPKS) scheme. In the meanwhile, Zhao et al. [77] also proposed a 

new efficient trapdoor-indistinguishable public key encryption scheme with keyword 

search which does not require a secure channel between the receiver and the server, 

where the trapdoor is updated and kept fresh for every session. For cases where the data 

owner wishes to put some limits to the user’s time of data access, issuing a time-bound 

key to the user is a good way. In 2014, Liu et al. combined the concept of attribute-

based encryption and time-based key to create a time-based proxy re-encryption scheme 

for data sharing in cloud environments [45]. In this paper, we shall propose three new 

schemes to satisfy all the requirements raised up in the scenarios mentioned above with 

security issues such as data confidentiality, privacy, integrity, and authority well taken 

care of. 
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1.2 Research Subject 

This study did not only focus on data confidentiality, privacy protection, and data 

integrity maintenance in cloud storage environments but also aimed to make the cloud 

data access process more user-friendly. The first scheme we shall propose in this thesis 

is a secure trapdoor-indistinguishable public encryption scheme with keyword search. 

The trapdoor-indistinguishability property means if the user sends the trapdoor of a 

certain keyword to the CSP multiple times, the trapdoor is updated and thus kept fresh 

every time when the user sends the requirement. In 2012, Zhao et al. proposed a new 

efficient trapdoor-indistinguishable public key encryption scheme with keyword search 

that does not require a secure channel between the receiver and the server. Although 

Zhao et al.'s scheme can satisfy such security requirements as user authentication and 

authorized identity protection, it fails to keep the CSP from storing fake ciphertexts. In 

other words, if the CSP didn't verify the identity of the data owner and thus stored a 

fake ciphertext, it cannot later search for the data the user wants. 

The second scheme is a searchable hierarchical conditional proxy re-encryption 

scheme. In Weng et al.’s conditional proxy re-encryption scheme [72], the data owner 

can assign which ciphertext satisfies a certain keyword condition set, and the semi-

trusted proxy server can do re-encryption. It is true that Weng et al.’s ideas are very 

helpful in handling the huge amounts of data in cloud environments; however, in reality, 

their scheme fails in both encrypted data searching and conditional proxy re-encryption. 

Inspired by Fang et al. [24], we shall propose a searchable hierarchical conditional 

proxy re-encryption scheme we have created that combines keyword search and 

conditional proxy re-encryption. 

The third scheme we shall propose in this thesis is a time-bound key-aggregate 

encryption scheme. Handling huge loads of data that are subject to change at any time, 
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cloud storage services are facing the challenge of properly dealing with the problem of 

user legality management while making sure that the services provided are conveniently 

user-friendly. Chu et al. [19] proposed a scheme called Key-Aggregate Cryptosystem 

(KAC). Distinct form typical attribute-based encryption schemes, in Chu et al.’s scheme, 

the user can use one aggregate key to decrypt data of all the attributes specified. This is 

a very convenient design for the user. Besides that, there are cases where the data owner 

does not want the data stored in the cloud to be open for access all the time, and this is 

when the concept of time control comes in. Inspired by Chu et al.’s scheme, we have 

created a new scheme that combines the concept of key-aggregate cryptosystem and 

the use of time-bound key. Our third new scheme is not only extremely user-friendly 

but also guarantees data security. 

1.3 Thesis Organization 

The remainder of this thesis is organized as follows. In Chapter 2, we will 

introduce Zhao et al.’s trapdoor-indistinguishable public key encryption scheme with 

keyword search, followed by our improved version of the scheme. Then, in Chapter 3, 

we will present our new scheme that combines keyword search and conditional proxy 

re-encryption for cloud storage. In Chapter 4, we will detail our time-bound key-

aggregate encryption scheme for cloud storage service. Finally, the conclusion will be 

in Chapter 5. 
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Chapter 2  Public Key Encryption 

Scheme with Keyword Search 

Cloud storage allows users to easily access their data in cloud anytime and 

anywhere by using any device that can get online, such as a wireless PDA, a smartphone, 

or a notebook computer. Nevertheless, how can we make sure that this simple access to 

cloud storage comes at a satisfactory security level? Keyword search with data 

encryption seems to be a good answer. In 2012, Zhao et al. proposed a trapdoor-

indistinguishable public key encryption scheme with keyword search to be applied to 

the field of cloud storage service. However, we found a weakness in Zhao et al.’s 

scheme. In this paper, we shall point out the weakness and offer an improved version 

of trapdoor-indistinguishable public key encryption with keyword search for cloud 

environments. In our improved scheme, we make the keyword trapdoor 

indistinguishable while protecting the PEKS ciphertext against forgery attacks. 

Compared with other PEKS schemes, our new design is not only more efficient but 

gives better performance in terms of correctness and security. 

 

2.1 Preliminaries 

Cloud computing refers to both the applications delivered as services over the 

Internet and the hardware as well as systems software in the data centers that provide 

those services [68]. Cloud storage is one of the most popular applications served by the 

cloud. Nowadays, more and more people and businesses keep their data in the cloud. 

Thanks to the cloud storage service, with a tiny, lightweight device such as a wireless 

PDA, smartphone or notebook in their hands, users can readily access their data anytime 



 

7 
 

and anywhere. As cloud storage technologies advance, the security of the data stored in 

cloud environments becomes a more and more important issue. To keep any malicious 

party from accessing and making use of the data stored in the cloud, data owners often 

need to encrypt the data before uploading them to the cloud server. In that case, when 

a legal user wishes to access the data stored in the cloud, he/she will have to download 

the data as a whole instead of picking out and downloading only the relevant part or 

parts. For example, let’s suppose both Alice and Bob are legal users of some specific 

data. Alice stored the data in the cloud, and Bob wants to access some information about 

“computer”. Bob has no choice but to download all the data stored in the cloud before 

he can sort out the parts of the data that are actually related to “computer”. The 

downloading of the whole pack of data can be a real waste of time and resources 

especially when the data stored in the cloud are in very large quantities while only very 

small portions of them need to be accessed. To retrieve only the part or parts of the data 

that the user really needs, keyword search seems to be a good solution. 

However, if the uploaded data in the cloud has been encrypted by the data owner, 

then how can we make keyword search work? In 2000, Song et al. [59] proposed a 

secure keyword search scheme using a symmetric cipher. In 2004, in their well-

celebrated article entitled “Public Key Encryption with Keyword Search”, Boneh et al. 

[6] went a step further and offered a scheme later often referred to as PEKS. Boneh et 

al.’s PEKS scheme has a secure channel between the cloud server and the user. In 2008, 

in order to reduce the cost, Baek et al. extended Boneh et al.’s PEKS scheme into a 

secure-channel-free public key encryption scheme with keyword search (SCF-PEKS) 

[2]. However, in 2009, Rhee et al. pointed out that Baek et al.’s SCF-PEKS was 

vulnerable to the keyword guessing attack [51], and so they proposed the concept of 

trapdoor indistinguishability [52]. On the other hand, Liu et al. proposed an efficient 
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privacy-preserving keyword search scheme (EPPKS) [43] which improved the 

performance of PEKS. Meanwhile, in 2010, Li et al. [41] proposed a fuzzy keyword 

search scheme based on keyword similarity semantics capable of responding with the 

closest possible matching files. In 2012, Liu et al. [44] improved their earlier work 

EPPKS [43] and proposed a secure and privacy-preserving keyword search (SPKS) 

scheme. Besides, Zhao et al. [77] also proposed a trapdoor-indistinguishable public key 

encryption scheme with keyword search that does not require a secure channel between 

the receiver and the server. In addition to the researches mentioned above, quite a 

number of studies can be found in the literature concerned that focus on the quest for 

PEKS and keyword search with high efficiency and security [14, 26, 28, 31, 33, 39, 49, 

54]. 

Although PEKS schemes do enable users to get to the data they wish to access, 

how to make that happen in cloud environments with privacy fully protected is an 

important research issue. In 2013, Hsu et al. [31] made a list of some security 

requirements to be met in cloud computing environments as follows: 

1. User authentication 

The CSP (Cloud Service Provider) needs to confirm that the trapdoor of the 

keyword is sent from the authorized user and no one can discover the 

authorized user’s real identity except for the CSP. 

2. Authentication of data owner 

When the CSP receives the ciphertext from the data owner, in order to avoid 

having fake ciphertext stored, the CSP needs to authenticate that the ciphertext 

is sent from the real data owner.  
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3. Protection of authorized identity 

In case an attacker has the trapdoor ciphertext intercepted on the way from the 

data owner to the CSP, the attacker cannot derive the user’s identity from the 

intercepted trapdoor ciphertext. 

4. Trapdoor indistinguishability 

Due to the fact that the trapdoor ciphertext is sent via a public channel, an 

attacker may intercept the trapdoor ciphertext and try to figure out the real 

keyword. Trapdoor indistinguishability is the kind of protection that ensures 

no malicious attacker can obtain the information hidden in the trapdoor 

ciphertext by analyzing the trapdoor ciphertext. 

5. Resistance to keyword-guessing attack 

The trapdoor is frequently updated, and that is why it is said to be 

indistinguishable. With the trapdoor collected, an attacker still cannot 

offline/online guess the real keyword from the trapdoor. 

The PEKS schemes currently available can indeed provide user authentication and 

identity protection. However, there is not a mechanism to keep the CSP from storing 

fake ciphertext. Figure 1 shows a scenario where the data owner intends to send the 

data’s ciphertext and PEKS ciphertext to the CSP, but both pieces of ciphertext get 

intercepted by an attacker. The attacker then sends some fake ciphertext to the CSP. 

When receiving the fake ciphertext, without verifying the validity of the data owner, 

the CSP stores them as always so that the data can be searched and retrieved by users. 

Later on, when a legal user needs to access some data which can be directed to by a 

certain keyword, he/she creates a trapdoor for that keyword and sends it to the CSP. 

Since the CSP stored the wrong ciphertext, the server fails to retrieve the correct data. 

Finally, the user cannot get the due ciphertext to decrypt. 
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To mend this flaw, in this Section, we propose a secure trapdoor-indistinguishable 

public key encryption scheme with keyword search for cloud storage that satisfies the 

following requirements: 

1. There is no need for a secure channel between the cloud user and the cloud 

service provider (CSP). In other words, the trapdoor can be sent via a public 

channel. 

2. The trapdoor is indistinguishable. Even though an attacker can intercept the 

trapdoor, he/she still has no way to derive the real keyword by analyzing the 

trapdoor. 

3. Store fake ciphertext 

Authenticated user Data owner 

2. Send fake ciphertext 

1. Send ciphertext 

4. Send trapdoor of 

keyword 

5. Reject requirement due 

to keyword matching 

failure 

CSP Attacker 

Figure 1 PEKS without data owner authentication 
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3. The CSP can search through the ciphertext for keywords. The CSP can check 

whether or not the data contains certain keywords specified by the user without 

knowing the keywords and the content of the data. 

4. The CSP can verify whether the PEKS ciphertext is sent from the data owner 

and thereby avoid the forgery attack. 

 

2.2 Related Works 

In this section, we will quickly introduce the bilinear pairing technique [7] as well 

as some complexity assumptions and review the trapdoor-indistinguishable public key 

encryption scheme with keyword search (TI-PEKS) by Zhao et al. [77].  

 

2.2.1 Bilinear Pairing 

Let 𝔾1  be a cyclic additive group with prime order 𝑞  and 𝔾2  be a cyclic 

multiplicative group with prime order 𝑞, and suppose 𝑃 is the generator of group 𝔾1. 

With 𝑥, 𝑦 ∈ ℤ𝑞  and bilinear map 𝑒: 𝔾1 × 𝔾1 → 𝔾2 , there are some properties as 

follows: 

 Bilinearity: For all 𝑥, 𝑦 ∈ ℤ𝑞  and 𝑅, 𝑄 ∈ 𝔾1, 𝑒(𝑥𝑅, 𝑦𝑄) = 𝑒(𝑅, 𝑄)𝑥𝑦. 

 Computability: For any 𝑅, 𝑄 ∈ 𝔾1 , there exists an efficient algorithm to 

compute 𝑒(𝑅, 𝑄) ∈ 𝔾2. 

 Non-degeneration: 𝑒(𝑅, 𝑄) ≠ 1. 

 

 

 



 

12 
 

2.2.2 Complexity Assumptions 

Some complex problems can be created out of 𝔾1 as follows: 

 Discrete Logarithm Problem (DLP) 

Given two elements 𝑅 and 𝑄 in 𝔾1, it is difficult to find 𝑛 ∈ ℤ𝑞 such that 

𝑅 = 𝑛𝑄 if 𝑛 exists. 

 Computation Diffie-Hellman Problem (CDHP) 

Given 𝑅, 𝑥𝑅, 𝑦𝑅 for 𝑥, 𝑦 ∈ ℤ𝑞 , it is difficult to compute 𝑥𝑦𝑅. 

 Bilinear Diffie-Hellman Problem (BDHP) 

Given 𝑅, 𝑅𝑥 , 𝑅𝑦 , 𝑅𝑧  for 𝑥, 𝑦, 𝑧 ∈ ℤ𝑞 , it is difficult to compute 𝑒(𝑅, 𝑅)𝑥𝑦𝑧 ∈

𝔾2. 

2.2.3 Trapdoor-indistinguishable Public Key Encryption 

with Keyword Search 

In this subsection, we will review Zhao et al.’s trapdoor-indistinguishable public 

key encryption scheme with keyword search. In Zhao et al.’s TI-PEKS, there are three 

parties involved, namely the sender, the server, and the receiver. The scheme contains 

six algorithms as follows: 

 𝐾𝑒𝑦𝐺𝑒𝑛𝑃𝑎𝑟𝑎𝑚(𝑘):  A common parameter generation algorithm. With a 

security parameter 𝑘 ∈ ℕ  entered, the algorithm outputs the system’s 

common parameters 𝑐𝑝. 
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 𝐾𝑒𝑦𝐺𝑒𝑛𝑆𝑒𝑟𝑣𝑒𝑟(𝑐𝑝):  The public/private key generation algorithm for the 

server. It takes in the common parameters 𝑐𝑝 and outputs the public key 

𝑝𝑘𝑆 and the private key 𝑠𝑘𝑆 for the server. 

 𝐾𝑒𝑦𝐺𝑒𝑛𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟(𝑐𝑝): The public/private key generation algorithm for the 

receiver. With the common parameters 𝑐𝑝 taken in, the algorithm outputs 

the public key 𝑝𝑘𝑅 and the private key 𝑠𝑘𝑅 for the receiver. 

 𝑃𝐸𝐾𝑆(𝑐𝑝, 𝑝𝑘𝑆, 𝑝𝑘𝑅, 𝑤): The generation algorithm of the ciphertext’s PEKS 

𝑅 . The data owner inputs the system’s common parameters 𝑐𝑝, server’s 

public key 𝑝𝑘𝑆, receiver’s public key 𝑝𝑘𝑅 , as well as the keyword 𝑤, and 

then the algorithm outputs the ciphertext’s PEKS 𝑅 that is searchable. 

 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑐𝑝, 𝑠𝑘𝑅, 𝑤):  The trapdoor generation algorithm. The receiver 

inputs the system’s common parameters 𝑐𝑝, his/her private key 𝑠𝑘𝑅, as well 

as the keyword 𝑤, and then the algorithm generates the trapdoor 𝑇𝑊 of the 

keyword 𝑤. 

 𝑇𝑒𝑠𝑡(𝑐𝑝, 𝑇𝑊, 𝑠𝑘𝑆, 𝑅):  The keyword test algorithm. Input the system’s 

common parameters 𝑐𝑝, the server’s public key 𝑠𝑘𝑆, the ciphertext’s PEKS 

𝑅 and the trapdoor 𝑇𝑊 of the keyword 𝑤, and the algorithm will return 

“correct” if 𝑤′ = 𝑤 and “incorrect” otherwise. 
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2.3 New Scheme 

In this section, we shall first illustrate the architecture of our propoesd TI-PEKS 

scheme and then give the details of each step. 

2.3.1 Process 

In our improved scheme, there are 8 steps to take, namely system parameter 

generation, key generation for cloud service provider (CSP), key generation for user, 

key generation for data owner, PEKS ciphertext generation, ciphertext verification, 

keyword trapdoor generation, and search. Three participants are involved, including the 

data owner, who generates the data’s ciphertext and PEKS ciphertext and sends them 

to the CSP; the CSP, who provides the storage, stores the data and searches the data for 

the specific parts that the user requests; and the user, who wishes to retrieve certain 

parts of the data that contain a specific keyword and therefore sends the keyword’s 

trapdoor to the CSP. Figure 2 is the flowchart of our scheme with the purpose each step 

serves specified:  

 𝐾𝑒𝑦𝐺𝑒𝑛𝑃𝑎𝑟𝑎𝑚: In this step, some security parameters will be input to the 

system, and the system will output the common parameters.  

 𝐾𝑒𝑦𝐺𝑒𝑛𝐶𝑆𝑃 : With the public parameter taken in as input, the system outputs 

the CSP’s public key and private key. 

 𝐾𝑒𝑦𝐺𝑒𝑛𝑈𝑠𝑒𝑟 : With the public parameter and the user’s identity entered as 

input, the system outputs the user’s public key and private key. 
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 𝐾𝑒𝑦𝐺𝑒𝑛𝐷𝑎𝑡𝑎 𝑜𝑤𝑛𝑒𝑟: Taking in the public parameter and the data owner’s 

identity as input, the system outputs the data owner’s public key and private 

key. 

 𝑃𝐸𝐾𝑆: With the data encrypted, the data owner uses the common parameters 

and the user’s public key to generate the keyword 𝑤’s PEKS ciphertext. In 

addition, the data owner uses his/her private key to generate the verification 

message and sends the data’s ciphertext, PEKS ciphertext and verification 

message to the CSP. 

 𝑉𝑒𝑟𝑖𝑓𝑦: Upon receiving the encrypted data, the CSP uses the data owner’s 

public key to verify whether the ciphertexts were actually sent by the data 

owner. If yes, the CSP stores the data; otherwise, the ciphertexts are rejected. 

 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟:  When the user wants to retrieve some parts of the data that 

contain a certain keyword, he/she uses his/her private key and the CSP’s 

public key to generate the keyword’s trapdoor and sends it to the CSP. 

 𝑇𝑒𝑠𝑡: Upon retrieving the trapdoor, the CSP uses his/her private key and the 

user’s public key to check whether the trapdoor is equal to the PEKS 

ciphertext sent from the data owner. If positive, the CSP sends the ciphertext 

to the user; otherwise, the CSP denies the request. 
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2.3.2 The Proposed Scheme 

First of all, Table 1 lists the notations that will be used throughout our scheme. 

Then, each step that is to be taken in the scheme will be detailed. 

 

 

 

 

 

 

1. Send ciphertext 

2. Verify and store 

ciphertext 

CSP 

Data owner Authenticated user 

3. Send trapdoor of 

keyword 

4. Search with keyword 

and send due parts of 

ciphertext 

Figure 2 The proposed trapdoor-indistinguishable PEKS 
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Table 1 Notations used in the proposed trapdoor-indistinguishable PEKS 

Notations Descriptions 

𝑘 

𝐼𝐷𝑂 

𝐼𝐷𝑈 

𝑝𝑘𝑠 , 𝑠𝑘𝑠 

𝑝𝑘𝑂 , 𝑠𝑘𝑂 

𝑝𝑘𝑈 , 𝑠𝑘𝑈 

𝑤 

⨁ 

Security parameter, 𝑘 ∈ ℕ 

Identity of data owner 

Identity of user 

Public key and private key of CSP 

Public key and private key of data owner 

Public key and private key of CSP 

Keyword 

XOR operation 

 

 𝐾𝑒𝑦𝐺𝑒𝑛𝑃𝑎𝑟𝑎𝑚:  With a security parameter 𝑘 ∈ ℕ  input, the system 

generates a group 𝔾1  of prime order 𝑞 ≥ 2𝑘 , a random generator 𝑃  of 

𝔾1, and a bilinear map 𝑒: 𝔾1 × 𝔾1 → 𝔾2. Three hash functions are produced, 

namely 𝐻0: {0, 1}∗ → 𝑍 , 𝐻1: {0, 1}∗ → 𝔾1  and 𝐻2: 𝔾2 → {0, 1}𝑘 . In 

addition,  𝑑𝑤 denotes a description of the keyword space, and the common 

parameters are 𝑐𝑝 = (𝑞, 𝔾1, 𝔾2, 𝑒, 𝑃, 𝐻0, 𝐻1, 𝐻2, 𝑑𝑤). 

 𝐾𝑒𝑦𝐺𝑒𝑛𝑆𝑒𝑟𝑣𝑒𝑟: Input the common parameters 𝑐𝑝, choose a random number 

𝑥 ∈ ℤ𝑞
∗  and 𝑄 ∈ 𝔾1

∗  , and compute 𝑋 = 𝑥𝑃. Output the server’s public key 

𝑝𝑘𝑠 = (𝑐𝑝, 𝑄, 𝑋) and private key 𝑠𝑘𝑠 = 𝑥. 

 𝐾𝑒𝑦𝐺𝑒𝑛𝑈𝑠𝑒𝑟 : The CSP inputs the common parameters 𝑐𝑝 and the user’s 

identity 𝐼𝐷𝑈 . Then the CSP computes  𝑌 = 𝐻0(𝐼𝐷𝑈)𝑃  and 𝑦 = 𝑥𝑌  and  

sends the public key 𝑝𝑘𝑈 = (𝑐𝑝, 𝑌) and private key 𝑠𝑘𝑈 = 𝑦 to the user. 
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 𝐾𝑒𝑦𝐺𝑒𝑛𝐷𝑎𝑡𝑎 𝑜𝑤𝑛𝑒𝑟: The CSP inputs the common parameters 𝑐𝑝 and the 

data owner’s identity 𝐼𝐷𝑂 . Then the CSP computes  𝐴 = 𝐻0(𝐼𝐷𝑂)𝑃 and 

𝑎 = 𝑥𝐴 and sends the public key 𝑝𝑘𝑂 = (𝑐𝑝, 𝐴) and private key 𝑠𝑘𝑂 = 𝑎 

to the data owner. 

 𝑃𝐸𝐾𝑆: The data owner inputs 𝑐𝑝, 𝑝𝑘𝑆, 𝑝𝑘𝑈, 𝑠𝑘𝑂, 𝑤,  and 𝐴 and chooses a 

random number 𝑟 ∈ ℤ𝑞
∗ . Then the data owner computes R as PEKS 

ciphertext, where 𝑅 = (𝑈, 𝑉, 𝑡, 𝑉𝑂) , 𝑈 = 𝑟𝑃,  𝑉 = 𝑟𝐴 , 𝑡 =

𝑒(𝐻1(𝑤), 𝑈)𝑒(𝑟𝑄, 𝑋) , 𝑉𝑂 = 𝐻1(𝑡)⨁𝐻1(𝛼)  and 𝛼 = 𝑒(𝑄, 𝑟𝑎) . The data 

owner sends 𝑅 and the data’s ciphertext to the CSP. 

 𝑉𝑒𝑟𝑖𝑓𝑦: Upon receiving the data, the CSP inputs 𝑝𝑘𝑆, 𝑝𝑘𝑂, 𝑉𝑂 , and 𝑉 and 

computes 𝑉𝑂
′ = 𝐻1(𝑡) ⨁𝐻1(𝑒(𝑥𝑄, 𝑉)) . The CSP checks whether 𝑉𝑂

′  is 

equal to 𝑉𝑂 or not. If yes, the CSP stores the received data; otherwise, the 

CSP rejects the ciphertext. 

 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟:  The user inputs 𝑐𝑝, 𝑠𝑘𝑅, 𝑤  and 𝑌  and chooses a random 

number �̃� ∈ {0,1}∗. Then the user computes 𝑇𝑤1 = [𝑦−1𝐻1(𝑤) + 𝐻1(�̃�)] 

⨁[𝐻1(𝑒(𝑄, �̃�𝑦))]  and 𝑇𝑤2 = 𝑦𝐻1(�̃�) ∈ 𝔾1  and returns 𝑇𝑊  and �̃� 𝑌 , 

where 𝑇𝑊 = (𝑇𝑤1, 𝑇𝑤2), as a trapdoor for the keyword 𝑤. 

 𝑇𝑒𝑠𝑡:  The CSP inputs 𝑐𝑝, 𝑇𝑊, 𝑠𝑘𝑆, 𝑅,  and �̃� 𝑌  and computes 𝑇𝑤 =

𝑇𝑤1⨁𝐻1(𝑒(𝑥𝑄, �̃�𝑌) ), 𝑆 = 𝑒(𝑇𝑤2, 𝑈),  𝑡′ = 𝑒(𝑥𝑄, 𝑈)−1  and 𝑇 = 𝑡𝑡′ =

𝑒(𝐻1(𝑤), 𝑈). If 𝐻2(𝑒(𝑇𝑤 , 𝑉)) = 𝐻2(𝑇 ⋅ 𝑆), it returns “Correct”; otherwise, 

it returns “Incorrect”. 
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2.4 Security and Performance Analysis 

In this section, we shall show how our improved PEKS scheme compares with 

Boneh et al.’s [6], Beak et al.’s [2], Liu et al.’s [44], Rhee et al.’s [52], and Zhao et al.’s 

[77] in terms of security and performance. Then there will be a BAN logic [11, 72] 

correctness verification of the proposed scheme, followed by a security analysis. 

2.4.1 Comparison 

To begin with, let’s evaluate the security of the proposed scheme by comparing it 

with a number of related schemes. Table 2 shows the comparison results, where 

abbreviations User Auth, Owner Auth, AuthID Pro, Trap Ind and KW Gue are used to 

represent user authentication, data owner authentication, authorized identity protection, 

trapdoor indistinguishability and resistance to keyword-guessing attack, respectively. 

As Table 2 reveals, the proposed scheme does reach a higher security level and is 

therefore more user-friendly. 

Table 2 Security comparison among related schemes 

 Boneh et al.’s Beak et al.’s Liu et al.’s Rhee et al.’s Zhao et al.’s 

Our 

scheme 

User Auth ○ ○ ○ ○ ○ ○ 

Owner Auth ╳ ╳ ╳ ╳ ╳ ○ 

AuthID Pro ○ ○ ○ ○ ○ ○ 

Trap Ind ╳ ╳ ╳ ○ ○ ○ 

KW Gue ╳ ╳ ╳ ○ ○ ○ 

User Auth : user authentication 

Owner Auth : data owner authentication 

AuthID Pro : authorized identity protection 

Trap Ind: trapdoor indistinguishability  

KW Gue : resistance to keyword-guessing attack 
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Since PEKS ciphertext generation, data owner verification, trapdoor generation, 

and keyword test are the four major parts of a secure PEKS scheme and should be 

performed in each session, we only took the computation costs of these four steps into 

consideration when comparing our improved scheme with the others in terms of 

performance. Table 3 shows the comparison results, where simplified expressions such 

as PEKS, Verification, Trapdoor, and Test are used to represent PEKS ciphertext 

generation, data owner verification, trapdoor generation, and keyword test, respectively. 

In addition, 𝑃 denotes a map-to-point hash function operation, 𝐸 denotes a pairing 

operation, and 𝑀 denotes a multiplication operation. As Table 3 reveals, Liu et al.'s 

PEKS scheme is the most efficient of them all. However, Liu et al.'s scheme, as well as 

Boneh et al.’s and Beak et al.’s, does not satisfy the trapdoor indistinguishability 

requirement. On the other hand, although our improved scheme requires more 

computation in PEKS and Test, in Trapdoor it costs less than Zhao et al.’s scheme. 

Considering the fact that our improved scheme offers an obviously higher level of 

security with data owner authentication, trapdoor indistinguishability and resistance to 

keyword-guessing attack all covered, we find the slight extra computation in PEKS and 

Test pays off well. 
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Table 3 Performance comparison among related schemes 

 

Boneh et 

al.’s 

Beak et 

al.’s 

Liu et 

al.’s 

Rhee et 

al.’s 

Zhao et 

al.’s 

Our scheme 

PEKS/SCF-

PEKS 

1𝑃 + 1𝐸 

1𝑃 + 2𝐸

+ 1𝑀 

1𝑃 + 1𝐸 1𝑃 + 1𝐸 

1𝑃 + 2𝐸

+ 3𝑀 

3𝑃 + 3𝐸

+ 3𝑀 

Verification ╳ ╳ ╳ ╳ ╳ 2𝑃 + 1𝐸 

Trapdoor 1𝑃 1𝑃 + 1𝑀 1𝑃 2𝑃 

4𝑃 + 1𝐸

+ 3𝑀 

4𝑃 + 1𝐸

+ 2𝑀 

Test 1𝑃 + 1𝐸 1𝑀 + 1𝐸 1𝐸 1𝑃 + 1𝐸 

1𝑃 + 4𝐸

+ 2𝑀 

1𝑃 + 4𝐸

+ 2𝑀 

𝑃 denotes a map-to-point hash function operation. 

E denotes a pairing operation. 

M denotes a multiplication operation. 

 

2.4.2 Correctness Analysis 

The BAN logic is a well-accepted method to analyze the correctness of 

cryptographic protocols. In this subsection, we will have some notations, goals and 

assumptions defined and then use the BAN logic [11, 72] to verify the correctness of 

our scheme.  

 Notations 

Let’s take a quick look at the syntax and notations of the BAN logic. First, we have 

𝐴 and 𝐵 that denote two specific participators, 𝑋 stands for a formula (statement), 

and 
𝐾𝐴
⟼

𝐴 , 
𝐾𝐵
⟼

𝐵 , 𝐾𝐴
−1  and 𝐾𝐵

−1  are 𝐴 ’s and 𝐵 ’s public key and secret key, 

respectively. There are some rules as follows [11, 72]: 

1. 𝐴|≡𝑋 means 𝐴 believes that formula 𝑋 is ture. 
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2. 𝐴|≡ 𝐵 means 𝐴 believes 𝐵’s action. 

3. 𝐴|⟹𝑋 means 𝐴 has complete control over formula 𝑋. 

4. 𝐴 ⊲ 𝑋 means 𝐴 holds or sees formula 𝑋. 

5. #(𝑋) means formula 𝑋 is fresh or has not been used before. 

6. 𝐾𝐴
⟼

𝐴 means 𝐾 is the public key for 𝐴 and 𝐾𝐴
−1 is the private key for A. 

7. 
𝑅𝑢𝑙𝑒 1

𝑅𝑢𝑙𝑒 2
 means 𝑅𝑢𝑙𝑒 2 can be derived from 𝑅𝑢𝑙𝑒 1. 

 Goals 

With three roles involved, namely the data owner (𝑂𝑤𝑛𝑒𝑟), the cloud service 

provider (𝐶𝑆𝑃) and the user (𝑈𝑠𝑒𝑟), in our scheme, there are two goals to be achieved: 

in the data owner verification process, 𝐶𝑆𝑃 is to believe that 𝑂𝑤𝑛𝑒𝑟 has the private 

key to create the PEKS ciphertext; in the keyword search process, 𝐶𝑆𝑃 is to believe 

that 𝑈𝑠𝑒𝑟 has the private key to create the trapdoor of the keyword. These two goals 

of our scheme can be rephrased in the language of the BAN logic as follows: 

𝐺1. 𝐶𝑆𝑃|≡𝑂𝑤𝑛𝑒𝑟 ⊲ 𝐾𝑜𝑤𝑛𝑒𝑟
−1  

𝐺2. 𝐶𝑆𝑃|≡𝑈𝑠𝑒𝑟 ⊲ 𝐾𝑈𝑠𝑒𝑟
−1  

 Assumptions 

To analyze the correctness of our scheme, there are some assumptions as follows: 

𝐴1. 𝐶𝑆𝑃|≡ 𝐾𝑜𝑤𝑛𝑒𝑟
⟼

𝑂𝑤𝑛𝑒𝑟 

𝐴2. 𝐶𝑆𝑃|≡ 𝐾𝑈𝑠𝑒𝑟
⟼

𝑈𝑠𝑒𝑟 

𝐴3. 𝑂𝑤𝑛𝑒𝑟|≡ 𝐾𝐶𝑆𝑃
⟼

𝐶𝑆𝑃 

𝐴4. 𝑂𝑤𝑛𝑒𝑟|≡ 𝐾𝑈𝑠𝑒𝑟
⟼

𝑈𝑠𝑒𝑟 

𝐴5. 𝑈𝑠𝑒𝑟|≡ 𝐾𝐶𝑆𝑃
⟼

𝐶𝑆𝑃 

𝐴6. 𝐶𝑆𝑃|⟹𝐾𝐶𝑆𝑃
−1  
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𝐴7. 𝐶𝑆𝑃|⟹𝐾𝑜𝑤𝑛𝑒𝑟
−1  

𝐴8. 𝐶𝑆𝑃|⟹𝐾𝑈𝑠𝑒𝑟
−1  

 Verification of The Data Owner 

With the goals and assumptions confirmed, now we can analyze the correctness of 

our data owner verification process with the BAN logic. The details are as follows: 

Message 1: 𝑂𝑤𝑛𝑒𝑟 ⟶ 𝐶𝑆𝑃: 𝑅 = (𝑈, 𝑉, 𝑡, 𝑉𝑂 , 𝑟𝐴) 

𝑉1. 𝐶𝑆𝑃 ⊲ 𝑅 

𝑉2. 
𝐶𝑆𝑃⊲𝑅,𝐶𝑆𝑃⊲𝐾𝐶𝑆𝑃

−1 ,𝐶𝑆𝑃⊲ 𝑟𝐴  

𝐶𝑆𝑃⊲𝑉𝑜
′  

𝑉3. 
𝐶𝑆𝑃|⟹𝐾𝐶𝑆𝑃

−1 ,𝐶𝑆𝑃⊲𝑉𝑜
′

𝐶𝑆𝑃|≡𝑉𝑜
 

𝑉4. 
𝐶𝑆𝑃|≡𝑉𝑜

𝐶𝑆𝑃|≡𝑂𝑤𝑛𝑒𝑟⊲𝐾𝑜𝑤𝑛𝑒𝑟
−1  

 

Finally, we can infer from formula 𝑉4 that our scheme does achieve the goal we 

set up. In the end, 𝐶𝑆𝑃 does believe that 𝑂𝑤𝑛𝑒𝑟 has the private key to create the 

PEKS ciphertext. 

 Verification of The User 

Now we analyze the correctness of our user verification process with the BAN 

logic as follows: 

Message 1: 𝑈𝑠𝑒𝑟 ⟶ 𝐶𝑆𝑃: 𝑇𝑊 = (𝑇𝑤1, 𝑇𝑤2) and �̃� 𝑌. 

𝑉1. 𝐶𝑆𝑃 ⊲ 𝑇𝑊, �̃� 𝐻1(𝐼𝐷𝑈) 

𝑉2. 
𝐶𝑆𝑃⊲𝑇𝑤1,𝐶𝑆𝑃⊲𝐾𝐶𝑆𝑃

−1 ,𝐶𝑆𝑃⊲�̃� 𝑌

𝐶𝑆𝑃⊲𝑇𝑤
 

𝑉3. 
𝐶𝑆𝑃⊲(𝑇𝑤,𝑇𝑤1,𝑇𝑤2,𝑈,𝑡)  

𝐶𝑆𝑃⊲(𝑆,𝑡′,𝑇)
 

𝑉4. 
𝐶𝑆𝑃|≡(𝑇𝑤,𝑉,𝑇),𝐶𝑆𝑃|≡𝐾𝐶𝑆𝑃

−1   

𝐶𝑆𝑃|≡𝑆
 

𝑉5. 
𝐶𝑆𝑃|≡𝑆  

𝐶𝑆𝑃|≡𝑇𝑤2
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𝑉6. 
𝐶𝑆𝑃|≡𝑇𝑤2  

𝐶𝑆𝑃|≡𝑈𝑠𝑒𝑟⊲𝐾𝑈𝑠𝑒𝑟
−1  

Finally, we can infer from formula 𝑉6 that our scheme does achieve the goal we 

set up. In the end, 𝐶𝑆𝑃 does believe that 𝑈𝑠𝑒𝑟 holds the private key to create the 

trapdoor of the keyword. 

2.4.3 Security Analysis 

In this subsection, we shall analyze the proposed scheme to see if it satisfies the 

following security requirements: 

(1) Only the CSP can use the keyword created by the data owner to do keyword 

search. 

If an attacker captures the PEKS ciphertext 𝑅 = (𝑈, 𝑉, 𝑡, 𝑉𝑂 , 𝑟𝐻1(𝐼𝐷)) 

through the communication channel between the data owner and the CSP and 

captures the trapdoor of keyword 𝑇𝑊 = (𝑇𝑤1, 𝑇𝑤2)  through the 

communication channel between the user and the CSP, he/she still cannot 

compute 𝐻1(𝑒(𝑥𝑄, �̃�𝐻1(𝐼𝐷𝑈)𝑃)), 𝐻1(𝑒(𝑄, �̃�𝑦) and 𝑡′ = 𝑒(𝑥𝑄, 𝑈)−1  from 

the captured (R, TW) because to do that is as difficult as to solve the BDH 

problem. In other words, only the CSP, who owns the private key, can 

determine whether the trapdoor of the keyword is truly sent from the user by 

confirming it against what the data owner set up. 

(2) The trapdoor of the keyword is indistinguishable. 

In our scheme, since the random string �̃� chosen by the user differs from 

session to session, a keyword cannot generate the same trapdoor a second time. 

In other words, the trapdoor of the same keyword will be changed in every 

session. This way, even if an attacker captures the trapdoor in a given session, 
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the captured trapdoor still cannot be used to come by the keyword in any 

following session. 

(3) The CSP can determine that the PEKS ciphertext is sent by an authorized data 

owner. 

Only an authorized data owner have 𝐴 and 𝑎, both generated by the CSP. 

The authorized data owner can use 𝐴 and 𝑎 to generate the PEKS ciphertext 

and authentication information. Upon receiving the message, the CSP can 

utilize its private key to determine whether the PEKS ciphertext is truly sent 

by the authorized data owner. 

(4) Only the CSP can verify the user’s identity. 

Even if an attacker captures the data delivered through the communication 

channel between the user and the CSP, there is still no way the attacker can 

analyze the information and get to know the user’s identity. Only the CSP can 

verify the user’s identity by testing the received data against the values the 

CSP holds.  
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Chapter 3  Hierarchical Conditional 

Proxy Re-encryption Scheme 

As cloud technologies thrive, researches in the field of cloud storage have 

switched their focus from encryption-decryption techniques that help data owners 

protect their privacy and data confidentiality to the application of searching techniques 

on encrypted data while maintaining high level security and privacy of outsource data. 

To begin with, Song et al. offered some practical techniques for searches on encrypted 

data. After that, Weng et al. presented their conditional proxy re-encryption scheme 

where the data owner can decide which ciphertext satisfies a certain keyword condition 

set and then can have the retrieved data re-encrypted by the semi-trusted proxy server. 

The basic concepts of the above schemes are indeed quite innovative and do lead the 

way towards the solutions to the major practical cloud storage application problems; 

however, of all the researches that follow, none has had both searching on encrypted 

data and conditional proxy re-encryption combined. In this paper, we propose a new 

scheme for cloud storage services that integrates keyword search with conditional proxy 

re-encryption. This say, with a newly added keyword or new proxy, the cloud service 

provider is able to generate a hierarchical key. As far as data security is concerned, our 

scheme provides proven data owner authentication, re-delegation, and chosen-

ciphertext security. The superior performance of the proposed scheme has been 

established by comparing it with related works, and our security analysis as well as 

BAN logic correctness check also offered solid proof that the new scheme is both 

practical and robust. 
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3.1 Preliminaries 

Nowadays, due to the amazing mobility and convenience the thriving Internet and 

related wireless technologies have brought, more and more people have fallen into the 

habit of keeping their data in cloud storage instead using traditional portable storage 

devices such as USB flash drives. As people get more and more dependent on cloud 

storage services, cloud servers have to handle larger and larger quantities of data, 

sensitive information included. In other words, how to provide satisfactory mobility 

and convenience without sacrificing data security and confidentiality in cloud 

environment is the main concern. Currently, when a data owner wants to store some 

sensitive data in cloud storage, he/she needs to encrypt the data before uploading them 

to the cloud storage so as to maintain data secrecy. After uploading the data to cloud 

storage, he/she can then access them wherever Internet connection is available; in other 

words, he/she can either access the data at home or office where cabled connection is 

ready, or he/she can use a mobile device such as a smart phone or tab with Wi-Fi when 

he/she is out somewhere. Of course there can also be cases where a person (the data 

owner) has the data uploaded to the cloud storage and then another person (the 

authorized data user) accesses the data stored. However, oftentimes a data owner can 

have tons and tons of data uploaded to cloud storage. How can he/she access a certain 

part or certain parts of the data stored in cloud, then? In the past, there were two ways 

to get the job done [23]: 

1. The user downloads all his/her data from cloud. Since the data are in encrypted 

form, after the downloading, the user must decrypt all the data. Now the data 

are in plaintext format, and the user can finally search through them and pick 
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out the part or parts he/she desires. Just as it appears, this whole process is a 

lot of trouble for the user. 

2. The user sends his/her secret key to the cloud server. With the user’s secret 

key, the cloud server decrypts all the data uploaded by the user and finds the 

part or parts of the data that the user desires. In this design, the user has no 

choice but to totally trust the cloud server, which can be a serious security 

problem if the cloud server has malicious purposes. 

To deal with the above problems, Song et al. [59] were the first to raise the concept 

of searching on encrypted data and named it the method of keyword search. In their 

method, the data owner can encrypt the data with some keywords, and the user can later 

access a certain part of the encrypted data that contains a specified keyword without 

having to download all the encrypted data, decrypt them all, and then do the searching. 

This way, the user can easily retrieve the part of the data that is needed without leaking 

any information. Here is a scenario to illustrate the concept of keyword search on 

encrypted data: Suppose Alice wants to store some data in cloud storage. She generates 

the ciphertext of the data. To make the data easy to access, Alice also sets the keyword 

“October” for the data. After generating the ciphertext of the keyword “October”, Alice 

sends all the encrypted data to cloud storage. Later, when Bob, an authorized user, wants 

to retrieve the data that contains the keyword “October”, he first generates the trapdoor 

of the keyword “October” and then sends this trapdoor to the cloud server as an access 

request. Upon receiving the request, the cloud server searches through the encrypted 

data and finds the data that contains the keyword “October” without decrypting the 

ciphertext. After that, the cloud server returns the corresponding ciphertext to Bob. 

However, in real-world practice, there are always risks when the cloud user has to 

fully trust the cloud service provider. In other words, there is no way the data owner 
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should hand his/her private key over to the server. To solve this problem, Blaze et al. 

[5] presented the concept of proxy re-encryption which allows the delegated semi-

trusted server to re-encrypt the ciphertext by using a re-encryption key without learning 

any information about the plaintext. There is a scenario to illustrate the concept of proxy 

re-encryption: Alice uses her public key to encrypt the data and uploads the encrypted 

data to the server. Alice has some data for Bob, but she does not want Bob to have her 

private key. Without Alice’s private key, Bob cannot decrypt the data. In order for Bob 

to be able to decrypt the ciphertext by using his own private key, Alice exploits her 

pubic key and Bob’s public key to generate a new key for the server called a re-

encryption key. With this key, the server can re-encrypt the ciphertext without getting 

the plaintext. Then Bob can use his private key to decrypt the ciphertext without getting 

Alice’s private key. 

Later in 2009, the notion of conditional proxy re-encryption was brought up by 

Weng et al. [71]. As the name suggests, by applying conditional proxy re-encryption, 

the data owner is enabled to decide which ciphertext satisfies a certain keyword 

condition set that can be re-encrypted by the proxy. Then, in 2012, Fang et al. took a 

step further and proposed a hierarchical conditional proxy re-encryption scheme [24]. 

Inspired by Fang et al., in this paper, we shall propose a searchable hierarchical 

conditional proxy re-encryption scheme we have designed for cloud storage. As the 

name reveals, the aim of our new scheme is to combine keyword search and conditional 

proxy re-encryption. Our scheme has the following properties: 

1. Searching data without decrypting the ciphertext 

The CSP (Cloud Server Provider) does not need to decrypt the ciphertext; all 

the CSP does with the data in cloud storage is search on the encrypted data 

with a keyword in encrypted format to find the data the user needs. 
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2. User authentication 

The CSP can confirm the user’s real identity with the trapdoor sent from the 

user. 

3. Data owner authentication 

The CSP can utilize the ciphertext uploaded by the data owner and some 

public parameters to verify the legality of the data owner’s identity and the 

ciphertext. 

4. Re-delegation 

The CSP can utilize its re-encryption key to derive the sub-re-encryption key 

for the newly added keyword or for their children. 

5. Chosen-ciphertext security 

Our scheme is based on Fang et al.’s design [24]; by the same token, our 

scheme provides the same level of chosen-ciphertext security on the first and 

the second ciphertext. 

3.2 Related Works 

In this section, some related works dealing with keyword search on encryption 

data as well as some proxy re-encryption and conditional proxy re-encryption schemes 

will be quickly reviewed. 

3.2.1 Keyword Search on Encrypted Data 

To make searching on encrypted data possible, Song et al. [59] first proposed a 

secure keyword search scheme in 2000. After that, many researchers have focused on 

how to design secure, efficient schemes for searches on encrypted data [2, 6, 9, 13, 26, 

31, 36, 39, 41, 43, 44, 49, 51, 58, 73, 77]. In 2004, Boneh et al. [6] proposed the idea 

of public key encryption with keyword search (PEKS), which allows the server to 
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search through the stored data for the parts that contain certain keywords without 

decrypting the ciphertext. Golle et al. [26] proposed a conjunctive keyword search 

mechanism that allows the user to search with a conjunction of multiple keywords. 

Later, Park et al. [49] proposed an efficient public encryption scheme with conjunctive 

keyword search. On the other hand, to avoid the use of pairing operations, in 2006, 

Khader [36] proposed a public key encryption scheme with keyword search based on 

K-Resilient IBE. In 2008, Baek et al. [2] extended the PEKS into a secure channel free 

public key encryption scheme with keyword search (SCF-PEKS), which does not 

include any secure channel between the user and the server. Then, in 2009, Liu et al. 

[43] proposed an efficient privacy preserving keyword search (EPPKS) scheme to 

improve the performance of PEKS, while Rhee et al. [51] brought up the concept of 

trapdoor indistinguishability and proposed a new scheme to mend the weakness they 

found in Baek et al.’s SCF-PEKS. In 2012, Liu et al. [44] improved Liu et al.’s EPPKS 

and proposed a new keyword search scheme called Secure and Privacy-preserving 

Keyword Search (SPKS) that can do searches on encrypted data with the server in 

charge of the re-encryption of the ciphertext. 

3.2.2 Proxy Re-encryption 

A proxy re-encryption (PRE) scheme allows the delegated semi-trusted server to 

re-encrypt the ciphertext by using its re-encryption key without learning any 

information about the plaintext. The concept of proxy re-encryption was proposed by 

Blaze et al. [5] in 1998. Later on, the pairing operation was commonly used in schemes 

of this kind [1, 12, 20, 27, 42, 70]. In 2007, Ateniese et al. proposed an identity-based 

proxy re-encryption scheme where the ciphertext can be transformed from one identity 

to another [1]. In addition, Chu and Tzeng [20] also proposed an identity-based proxy 
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re-encryption scheme without random oracles. Finally, due to the fact that the pairing 

operation consumes too much communication resources, in recent years, some PRE 

schemes have been proposed to avoid the use of the pairing operation [18, 22, 47, 53]. 

3.2.3 Conditional Proxy Re-encryption 

Firstly, type-based proxy re-encryption (TB-PRE) is a design where the data owner 

can categorize his/her ciphertext into different subsets and then delegate the decryption 

right of each subset to a specific delegator. In 2008, Tang [61] first proposed the 

construction of TB-PRE, providing fine-grained delegation and enabling the semi-

trusted server to re-encrypt ciphertext of a specific type by using a re-encryption key. 

Since then, quite a big portion of research endeavors in the field of study have been 

dedicated to the development of TB-PRE schemes [21, 24, 25, 56, 63, 71, 72]. Among 

the schemes, Seo et al.’s TB-PRE scheme offered proven security against the standard-

model chosen ciphertext attack and achieved proxy invisibility [56]. Since by definition 

TB-PRE means that the data owner can categorize the ciphertext into different subsets, 

TB-PRE is also referred to as conditional proxy re-encryption (C-PRE), where a 

condition is equivalent to a type [56]. Weng et al. [71] presented a kind of conditional 

proxy re-encryption where the data owner can assign some specific ciphertext to match 

a certain keyword condition set that can be re-encrypted by the semi-trusted proxy 

server. Later, Weng et al. [72] pointed out that Weng et al.’s scheme [721] had failed to 

achieve chosen ciphertext attack security (CCA-security), and so they proposed a new 

C-PRE scheme to fix that problem. In addition, Fang et al. [25] also proposed an 

anonymous conditional proxy re-encryption scheme without random oracle. Chu et al. 

[21] presented a conditional proxy broadcast re-encryption scheme where the proxy can 

delegate decryption rights to a set of users at a time. In 2010, Vivek et al. [63] improved 
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the performance of Weng et al.’s [72] C-PRE scheme and proposed a more efficient 

construction for C-PRE. In 2012, Fang et al. proposed a hierarchical conditional proxy 

re-encryption (HC-PRE) scheme that enhanced the concept of C-PRE by allowing more 

general re-encryption key delegation patterns [24]. 

To this day, no scheme proposed has had both ideas of searching on encrypted data 

and conditional proxy re-encryption combined. Inspired by Fang et al. [24], in this paper, 

we propose a new scheme that puts together keyword search and conditional proxy re-

encryption. 

3.3 Review Weng et al.’s Scheme 

In this section, we shall review bilinear pairing [7], give some complexity 

assumptions in our scheme, and then introduce the idea of hierarchical conditional 

proxy re-encryption [72]. 

3.3.1 Bilinear Pairing 

Let 𝔾1and 𝔾2 be two cyclic group with prime order 𝑝, and 𝑔 is the generator 

of group 𝔾1. Suppose we have 𝑎, 𝑏 ∈ ℤ𝑞 and a bilinear map 𝑒: 𝔾1 × 𝔾1 → 𝔾2. Then 

there are some notable properties as follows [7]: 

 Bilinearity for all 𝑎, 𝑏 ∈ ℤ𝑞and𝑃, 𝑄 ∈ 𝔾1,𝑒(𝑎𝑃, 𝑏𝑄) = 𝑒(𝑃, 𝑄)𝑎𝑏. 

 Computability. There in always an efficient polynomial time algorithm to 

compute 𝑒(𝑃, 𝑄) ∈ 𝔾2, for any 𝑃, 𝑄 ∈ 𝔾1. 

 Non-degeneration. There is always such a pair of 𝑃  and 𝑄 ∈ 𝔾1  that 

satisfies 𝑒(𝑃, 𝑄) ≠ 1. 
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3.3.2 Hierarchical Conditional Proxy Re-encryption 

Here is the hierarchical conditional proxy re-encryption design proposed by Weng 

et al. in 2009 [72]. In their scheme, there are eight algorithms: setup, key generation, 

re-encryption key generation, level 2 encryption, level 1 encryption, re-encryption, 

level 2 decryption, and level 1 decryption. Figure 3 gives a rough idea of how the system 

works, and the algorithms are as follows: 

 Setup: The setup algorithm is executed by a trusted party with the input being 

the security parameter 1𝐾 and the output the global parameters 𝐺𝑃. 

 KeyGen: The key generation algorithm produces the public key 𝑝𝑘𝑖  and 

secret key 𝑠𝑘𝑖 for the user 𝑖. 

 RKeyGen: The re-encryption key generation algorithm takes the secret key 

𝑠𝑘𝑖, the conditional keyword 𝑤, and the other public key 𝑝𝑘𝑗 as input and 

then outputs the re-encryption key 𝑟𝑘
𝑖

𝑤
→𝑗

. 

 Enc2: Level 2 encryption algorithm intakes the public key 𝑝𝑘, the plaintext 

𝑚 ∈ ℳ and the conditional keyword 𝑤 and then outputs level 2 ciphertext 

𝐶𝑇. Here ℳ is the message space. 

 Enc1: Level 1 encryption algorithm takes the public key 𝑝𝑘  and the 

plaintext 𝑚 ∈ ℳ as input and then outputs level 1 ciphertext  𝐶𝑇. Notice 

that this ciphertext cannot be encrypted by any other user. 
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 ReEnc: The re-encryption algorithm intakes the second ciphertext  𝐶𝑇 and 

the re-encryption key 𝑟𝑘
𝑖

𝑤
→𝑗

. 

 Dec2: Level 2 decryption algorithm takes the second ciphertext  𝐶𝑇 and the 

secret key 𝑠𝑘 as input and then outputs the message 𝑚. 

 Dec1: Level 1 decryption algorithm intakes the first ciphertext 𝐶𝑇 and the 

secret key 𝑠𝑘 and then outputs the message 𝑚. 
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Figure 3 Hierarchical conditional proxy re-encryption 
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3.4 New Scheme 

In this section, we shall present our searchable hierarchical conditional proxy re-

encryption scheme. We will first illustrate the framework of our scheme and then give 

detailed descriptions to all the phases of our scheme. 

3.4.1 Framework  

In this subsection, we shall first introduce the participants in our scheme and then 

the phases. There are four kinds of participants in our scheme: the trusted third party 

(TTP), the cloud service provider (CSP), the data owner, and the users. The role each 

participant plays is shown as follows. 

1. Trusted third party (TTP): The trusted third party is responsible for 

generating the public key and the secret key for the user and the data owner 

and also generating the re-encryption key for the cloud server provider. 

2. Cloud service provider (CSP): The function of CSP is to accept and store the 

ciphertext sent by the data owner. Upon receiving the retrieval request from 

the user, CSP searches through the stored data and finds what the user wants. 

Besides that, CSP is able to re-encrypt the ciphertext and uses a re-encryption 

key to generate a hierarchical key for a newly added keyword. 

3. Data owner: The data owner generates ciphertext on two different levels. One 

does not contain the keyword vector, while the other contains the keyword 

vector set by the data owner. 
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4. Users: When a user wants to retrieve some data that contains a certain 

keyword, the user needs to generate the trapdoor of the keyword and then 

send it to CSP as a request. Then, when the user receives the re-encrypted 

ciphertext that CSP returns, he/she can use his/her secret key to decrypt it. 

There are 11 phases in our scheme: setup, key generation, re-encryption key 

generation, level 1 encryption, level 2 encryption, verification, trapdoor generation, 

keyword searching, re-encryption, level 1 decryption, and level 2 decryption. The 

flowchart of our scheme is shown in Figure 4, and the function of each phase is as 

follows: 

 Setup: In this phase, the security parameter  is the input, the bilinear map 

is set, and then the system public parameters are outputted. 

 KeyGen: In this phase, the system public parameters are inputted, and the 

public key and the secret key for the data owner and the user are outputted.  

 Re-keyGen: In this phase, the inputs are the user’s secret key, the data 

owner’s secret key and a conditional keyword vector, and then the output is 

the re-encryption key for CSP. When a new keyword is added to the 

conditional keyword vector, CSP can use the current re-encryption key to 

generate a new re-encryption key. This is called hierarchical key derivation. 

 Enc1: In order to have the message encrypted, the data owner inputs the 

message along with his/her public key and then gets the first level ciphertext 

for CSP. 
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 Enc2: To encrypt the message with a conditional keyword vector, the data 

owner inputs the message along with his/her public key and a conditional 

keyword vector. The output is the second level ciphertext for CSP. 

 Verify: Upon receiving the ciphertext, CSP determines whether the ciphertext 

is truly sent by the data owner and has not been tampered by a malicious 

attacker. 

 Trapdoor: In order to retrieve the data which contains a certain keyword, the 

user generates the trapdoor of the keyword vector and then sends it to CSP. 

 Search: To search for the data the user requests, CSP inputs the ciphertext, 

the user’s public key and the trapdoor. 

 ReEnc: When CSP finds the data that the user requests, CSP uses the re-

encryption key to encrypt the ciphertext. 

 Dec1: The user inputs his/her secret key and the first level ciphertext to 

decrypt the ciphertext. 

 Dec2: The user inputs his/her secret key and the second level ciphertext to 

decrypt the ciphertext. 
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3.4.2 Searchable Hierarchical Conditional Proxy Re-

encryption 

In this subsection, we look into the details of the phases in our scheme. Table 4 

lists the notations used in our scheme. 
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Table 4 Notations used in searchable hierarchical conditional PRE 

Notations Descriptions 

𝑝 

𝑔 

𝐺1, 𝐺2 

𝑒 

𝐿 

𝑚 

⨁ 

A prime order 

A generator of 𝐺1 

Multiplicative cyclic groups of prime order 𝑝 

Bilinear map 𝑒: 𝐺1 × 𝐺1 → 𝐺2 

The maximum length of keyword vector 

The message, 𝑚 ∈ ℳ 

XOR operation 

 

 Setup: With a security parameter  inputted, set (𝑝, 𝑔, 𝐺1, 𝐺2, 𝑒) as bilinear 

map parameters. Then, ℳ = {0,1}𝑘1 is set as the message space, and there 

are four one-way hash functions 𝐻1: {0,1}∗ → 𝑍𝑝
∗ , 𝐻2: 𝐺2 →

{0,1}𝑘1 , 𝐻3: {0,1}∗ → 𝐺1
∗, and 𝐻4: {0,1}∗ → 𝑍𝑝

∗ . Let the conditional keyword 

vector be 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑘) ∈ {0,1}∗ , where 𝑘  is the length of 𝑊 . 

Generate the random numbers 𝑔1, 𝑔2, ℎ1, ℎ2, … , ℎ𝐿 ∈ 𝐺1. The system public 

parameters are (𝑝, 𝑔, 𝐺1, 𝐺2, 𝑒, 𝑔1, 𝑔2, ℎ1, … , ℎ𝐿, 𝑘1, 𝐿, 𝐻1, 𝐻2, 𝐻3, 𝐻4). 

 KeyGen: Generate a random number 𝑥𝑖 ∈ 𝑍𝑝
∗  for user 𝑖 and then compute 

𝑋𝑖 = 𝑔𝑥𝑖 . Set the public key as 𝑝𝑘𝑖 = 𝑋𝑖  and secret key as 𝑠𝑘𝑖 = 𝑥𝑖 for 

user 𝑖. 

 Re-keyGen: Given the data owner’s secret key 𝑠𝑘𝑖, the conditional keyword 

vector 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑘), and the user’s secret key 𝑠𝑘𝑗, select a random 
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number 𝑟 ∈ 𝑍𝑝
∗  and compute 𝑎0 = 𝑔2

𝑥𝑖−𝑥𝑗 (∏ ℎ𝑙
𝐻4(𝑝𝑘𝑖,𝑤𝑙)

𝑔1
𝑘
𝑙=1 )

𝑙∈{𝑘+1,…,𝐿}

𝑟

, 

𝑎2 = 𝑔𝑟 , and𝑏 = (𝑏𝑙 = ℎ𝑙
𝑟)𝑙∈{𝑘+1,…,𝐿} . The re-encryption key for CSP is 

𝑟𝑘𝑖,𝑊,𝑗 = (𝑎0, 𝑎1, 𝑏). When CSP needs to generate a new re-encryption key 

for a new keyword vector 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑘 , 𝑤𝑘+1), CSP picks a random 

number  𝑡 ∈ 𝑍𝑝
∗  and then computes 𝑎0′ =

𝑎0𝑏𝑘+1
𝐻4(𝑝𝑘𝑖,𝑤𝑘+1)

(∏ ℎ𝑙
𝐻4(𝑝𝑘𝑖 ,𝑤𝑙)

𝑔1
𝑘+1
𝑙=1 )

𝑙∈{𝑘+2,…,𝐿}

𝑡

, 𝑎1′ = 𝑎1𝑔𝑡, and 𝑏′ = (𝑏𝑙 =

ℎ𝑙
𝑡)𝑙∈{𝑘+2,…,𝐿} . The hierarchical re-encryption key is 𝑟𝑘𝑖,𝑊𝑘+1,𝑗 =

(𝑎0′, 𝑎1′, 𝑏′), which is properly distributed to 𝑊𝑘+1for 𝑟′ = 𝑟 + 𝑡. 

 Enc1: Data owner chooses a random number 𝑅 ∈ 𝐺2
∗  and then computes 

𝑠 = 𝐻1(𝑚, 𝑅), 𝐵 = 𝑔𝑠, 𝐷 = 𝑒(𝑋𝑖 , 𝑔2)𝑠𝑅,and 𝐸 = 𝑚⨁𝐻2(𝑅). The first level 

ciphertext is 𝐶𝑇𝑖 = (𝐵, 𝐷, 𝐸). 

 Enc2: To encrypt the message with the conditional keyword vector 𝑊 =

(𝑤1, 𝑤2, … , 𝑤𝑘) , data owner chooses 𝑅 ∈ 𝐺2
∗  and then computes 𝑠 =

𝐻1(𝑚, 𝑅), 𝐵 = 𝑔𝑠, 𝐶 = (∏ ℎ𝑙
𝐻4(𝑝𝑘𝑖,𝑤𝑙)

𝑔1
𝑘
𝑙=1 )

𝑠

, 𝐷 = 𝑒(𝑋𝑖 , 𝑔2)𝑠𝑅, 𝐸 =

𝑚⨁𝐻2(𝑅), and 𝐹 = 𝐻3(𝐵, 𝐶, 𝐷, 𝐸)𝑠. The second level ciphertext is 𝐶𝑇𝑖 =

(𝐵, 𝐶, 𝐷, 𝐸, 𝐹). 

 Verify: After receiving the ciphertext, CSP checks out 

e (∏ ℎ𝑙
𝐻4(𝑝𝑘𝑖,𝑤𝑙)

𝑔1
𝑘
𝑙=1 , 𝐵) =? 𝑒(𝐶, 𝑔)  and 𝑒(𝐻3(𝐵, 𝐶, 𝐷, 𝐸), 𝐵) =? 𝑒(𝐹, 𝑔) . 

If both check out, CSP accepts and stores the ciphertext. 

 Trapdoor: When the user wants to retrieve a part of the stored data that 

contains the conditional keyword vector 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑘) , he/she 
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computes the trapdoor of the conditional keyword vector as 𝑇𝑤𝑗
=

(∏ ℎ𝑙
𝐻4(𝑋𝑖,𝑤𝑙)𝑘

𝑙=1 𝑔1)
𝑥𝑗

 and then sends it to CSP. 

 Test: When receiving the trapdoor from the user, CSP tests to see whether 

𝑒(𝐵, 𝑇𝑤𝑗
) is equal to 𝑒(𝑝𝑘𝑗, 𝐶) or not. If the result is positive, CSP re-

encrypts the ciphertext and then sends it to the user. 

 ReEnc: After finding the data that the user requests, CSP re-encrypts the 

ciphertext by computing 𝐷′ =
𝑒(𝑎1,𝐶)

𝑒(𝑎0,𝐵)
∙ 𝐷 . The re-encrypted ciphertext, 

namely 𝐶𝑇𝑗 = (𝐵, 𝐷′, 𝐸), is then sent to the user. 

 Dec1: To decrypt the re-encrypted first level ciphertext 𝐶𝑇𝑗 = (𝐵, 𝐷′, 𝐸), the 

user uses his/her secret key 𝑠𝑘𝑗 and computes 𝑅 =
𝐷′

𝑒(𝐵,𝑔2)
𝑥𝑗

, 𝑚 =

𝐸⨁𝐻2(𝑅),  and 𝑠 = 𝐻1(𝑚, 𝑅) . After computing 𝑅, 𝑚  and 𝑠 , the user 

checks 𝐵 =? 𝑔𝑠. If it checks out, then the message 𝑚 is returned. 

 Dec2: To decrypt the re-encrypted second level ciphertext 𝐶𝑇𝑗 =

(𝐵, 𝐶, 𝐷′, 𝐸, 𝐹)  containing the conditional keyword vector, the user uses 

his/her secret key 𝑠𝑘𝑗 and computes =
𝐷′

𝑒(𝐵,𝑔2)
𝑥𝑗

, 𝑚 = 𝐸⨁𝐻2(𝑅), and 𝑠 =

𝐻1(𝑚, 𝑅). After computing 𝑅, 𝑚  and 𝑠 , the user checks 𝐵 =? 𝑔𝑠 , 𝐶 =

? (∏ ℎ𝑙
𝐻4(𝑝𝑘𝑖,𝑤𝑙)

𝑔1
𝑘
𝑙=1 )

𝑠

, and 𝐹 =? 𝐻3(𝐵, 𝐶, 𝐷′, 𝐸)𝑠. If all check out, then the 

message 𝑚 is returned. 
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3.5 Security and Function Analysis 

In this section, we shall first show how our new scheme compares with Zhao et 

al.’s [77], Liu et al.’s [44], Fang et al.’s [24], and Seo et al.’s scheme [56] in terms of 

function as well as performance. Then, we will analyze the security of our scheme and 

confirm the correctness with a BAN logic [11, 73] check. 

3.5.1 Comparisons 

In this subsection, we compare the functions and performance of our scheme with 

those of Zhao et al.’s, Liu et al.’s, Fang et al.’s, and Seo et al.’s scheme. Of all the 

schemes compared, Zhao et al.’s, and Liu et al.’s focus on secure keyword search , while 

Fang et al.’s, and Seo et al.’s focus on conditional proxy re-encryption.  

3.5.1.1 Function Comparison 

Before looking into the comparison results, let’s define some abbreviations we use. 

Expressions such as AuthID Pro, User Auth, Owner Auth, Searching, and P-Re are used 

to indicate authorized identity protection, user authentication, data owner 

authentication, search on encrypted data, and proxy re-encryption, respectively. The 

comparison results are given in Table 5. As the table reveals, Zhao et al.’s, and Liu et 

al.’s both fall short of offering data owner authentication, which means vulnerability to 

the modification attack where the attacker sends fake ciphertext to CSP and the user 

never receives the data he/she requests. On the other hand, although Fang et al.’s and 

Seo et al.’s are under the protection of data owner authentication, they are both 

incapable of supporting searches on encrypted data. In contrast, our scheme offers both 

data owner authentication but also searching on encrypted data. 
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Table 5 Function comparison of our scheme and other schemes 

 AuthID Pro User Auth Owner Auth Searching P-Re 

Zhao et al.’s v v x v x 

Liu et al.’s v v x v v 

Fang et al.’s v v v x v 

Seo et al.’s v v v x v 

Our scheme v v v v v 

AuthID Pro : authorized identity protection 

User Auth : user authentication 

Owner Auth : data owner authentication 

Searching : search on encrypted data 

P-Re : proxy re-encryption 

 

 

3.5.1.2 Performance Comparison 

For the performance comparison, we use Encrypt, Trapdoor, Verification, Test, and 

Re-encryption as abbreviations for conditional encryption, trapdoor generation, 

verification of data owner, keyword test, and proxy re-encryption, respectively. Note 

that conditional encryption includes conditional encryption, type-based encryption, and 

keyword encryption. In addition, we define 𝑃  as a map-to-point hash function 

operation, 𝐸 as a pairing operation, and 𝑀 as a multiplication operation in 𝐺1. The 

performance comparison results are given in Table 6. 
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Table 6 Performance comparison of our scheme and other schemes 

 Encrypt Trapdoor Verification Test Re-encryption 

Zhao et al.’s 

1𝑃 + 2𝐸

+ 3𝑀 

4𝑃 + 1𝐸

+ 3𝑀 

− 

1𝑃 + 4𝐸

+ 2𝑀 

− 

Liu et al.’s 1𝑃 + 1𝐸 1𝑃 − 1𝐸 

1𝑃 + 2𝐸

+ 2𝑀 

Fang et al.’s 

3𝑃 + 1𝐸

+ 3𝑀 

− 2𝐸 + 1𝑀 − 2𝐸 

Seo et al.’s 1𝐸 + 4𝑀 − 1𝐸 + 2𝑀 − 1𝑀 

Our scheme 

3𝑃 + 1𝐸

+ 3𝑀 

0𝑃 + 0𝐸

+ 0𝑀 

2𝐸 + 1𝑀 1𝐸 2𝐸 

𝑃 denotes a map-to-point hash function operation. 

𝐸 denotes a pairing operation. 

𝑀 denotes a multiplication operation in 𝐺1. 

 

3.5.2 Security Analysis 

In this subsection, we analyze the security of our scheme. 

1. CSP can verify the data owner’s identity. 

To determine the legitimacy of the data owner, CSP utilizes the ciphertext 

𝐵, 𝐶, 𝐷, 𝐸, 𝐹, data owner’s public key, and the keyword vector to verify the 

data owner’s identity. Because the data owner uses the public key to generate 

the ciphertext, CSP can confirm the data owner’s identity by checking out the 

ciphertext. 
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2. CSP can verify that the sender of the ciphertext is an authorized data owner. 

To avoid mistakenly accepting tampered ciphertext from a malicious 

attacker, CSP must check the integrity of the ciphertext. When CSP verifies 

the data owner’s identity, the ciphertext is examined at the same time. If any 

part of the ciphertext is tampered, it cannot pass the verification. 

3. CSP can verify the user’s identity. 

Upon receiving the trapdoor of the keyword vector from a user as a searching 

request, CSP must check the user’s identity to make sure he/she is properly 

authorized. CSP utilizes the ciphertext 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, the data owner’s public 

key, the user’s pubic key and the keyword vector to verify the user’s identity. 

Only a legitimate user owns the secret key that can be used to generate the 

trapdoor. In fact, CSP can verify the user’s identity and search for the data 

the user requests as the same time. 

4. The user can verify whether the ciphertext is tampered. 

Upon receiving the re-encrypted ciphertext, the user verifies the integrity of 

the re-encrypted ciphertext to determine whether it has been tampered by a 

malicious attacker. The user exploits his/her secret key to decrypt the re-

encrypted ciphertext. After decrypting the re-encrypted ciphertext, the user 

exploits the re-encrypted ciphertext and the plaintext to check the integrity of 

the ciphertext. Only CSP has the re-encryption key and thus can have the 

ciphertext re-encrypted, and only the legitimate user can exploit his/her secret 

key to recover the integral plaintext. 

5. Our scheme can achieve chosen-ciphertext security. 

Based on Fang et al.’s design [15], our scheme inherits the chosen-ciphertext 

security on the first and the second ciphertext. 
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3.5.3 Correctness Analysis 

In this subsection, we use the BAN logic [11, 73] to check the correctness of the 

data owner verification, user verification, and ciphertext verification of our scheme. 

The BAN logic is a well-accepted method to analyze the correctness of cryptographic 

protocols. Before applying the BAN logic, let’s define some notations, goals and 

assumptions as follows. 

 Notations 

Here we deal with the syntax and notations of the BAN logic. Assume that 𝐴 and 

𝐵 are some specific participators, and 𝑋 is the formula (statement). The basic rules of 

language are as follows [11, 73]: 

8. 𝐴|≡𝑋 means 𝐴 believes that formula 𝑋 is ture. 

9. 𝐴|≡ 𝐵 means 𝐴 believes 𝐵’s action. 

10. 𝐴|⟹𝑋 means 𝐴 has complete control over formula 𝑋. 

11. 𝐴 ⊲ 𝑋 means 𝐴 holds or sees formula 𝑋. 

12. #(𝑋) means formula 𝑋 is fresh and has not been used before. 

13. 𝐾𝐴
⟼

𝐴 means 𝐾𝐴 is the public key for 𝐴 and 𝐾𝐴
−1 is the private key for A. 

14. 
𝑅𝑢𝑙𝑒 1

𝑅𝑢𝑙𝑒 2
 means 𝑅𝑢𝑙𝑒 2 is derived from 𝑅𝑢𝑙𝑒 1. 

 

 Goals 

The roles and the goals in our scheme are as follows. First, there are four roles in 

our scheme: the trusted third party (𝑇𝑇𝑃), the data owner (𝑂𝑤𝑛𝑒𝑟), the cloud service 

provider (𝐶𝑆𝑃), and the user (𝑈𝑠𝑒𝑟). Then, there are three goals to be achieved. In the 
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BAN logic language, the three goals are: 

𝐺1.𝐶𝑆𝑃|≡𝑂𝑤𝑛𝑒𝑟 ⊲ 𝐾𝑜𝑤𝑛𝑒𝑟
−1  

𝐺2.𝐶𝑆𝑃|≡𝑈𝑠𝑒𝑟 ⊲ 𝐾𝑈𝑠𝑒𝑟
−1  

𝐺3.𝑈𝑠𝑒𝑟|≡𝐶𝑆𝑃 ⊲ 𝑟𝑘 

𝐺1 means in verification phase 𝐶𝑆𝑃 needs to make sure that the sender of the 

ciphertext is 𝑂𝑤𝑛𝑒𝑟 and that the ciphertext has not been tampered by an attacker. So 

𝐶𝑆𝑃 must believe that 𝑂𝑤𝑛𝑒𝑟 holds his/her private key so that he/she can create the 

ciphertext. 𝐺2  means in the test phase 𝐶𝑆𝑃  needs to verify 𝑈𝑠𝑒𝑟 ’s identity to 

determine that the trapdoor is permissible by believing that 𝑈𝑠𝑒𝑟 holds his/her private 

key so that he/she can create the trapdoor. 𝐺3 means 𝑈𝑠𝑒𝑟 needs to determine that 

the re-encrypted ciphertext has not been tampered by an attacker; in other words, 𝑈𝑠𝑒𝑟 

needs to believe that 𝐶𝑆𝑃  holds the re-encryption key 𝑟𝑘  to generate the re-

encrypted ciphertext. 

 

 Assumptions 

With the goals set, now let’s state our assumptions as follows: 

𝐴1.𝐶𝑆𝑃|≡ 𝐾𝑜𝑤𝑛𝑒𝑟
⟼

𝑂𝑤𝑛𝑒𝑟 

𝐴2.𝑈𝑠𝑒𝑟|≡ 𝐾𝑂𝑤𝑛𝑒𝑟
⟼

𝑂𝑤𝑛𝑒𝑟 

𝐴3.𝐶𝑆𝑃|≡ 𝐾𝑈𝑠𝑒𝑟
⟼

𝑈𝑠𝑒𝑟 

𝐴4.𝑂𝑤𝑛𝑒𝑟|⟹𝐾𝑜𝑤𝑛𝑒𝑟
−1  

𝐴5.𝑈𝑠𝑒𝑟|⟹𝐾𝑈𝑠𝑒𝑟
−1  

𝐴6.𝐶𝑆𝑃|⟹𝑟𝑘 

𝐴7.𝐶𝑆𝑃|⟹𝑊 
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 Verification of The Data Owner 

The data owner verification process in the verification phase is checked with the 

BAN logic as follows: 

Message 1: 𝑂𝑤𝑛𝑒𝑟 ⟶ 𝐶𝑆𝑃: 𝐶𝑇𝑖 = (𝐵, 𝐶, 𝐷, 𝐸, 𝐹) 

𝑉1. 𝐶𝑆𝑃 ⊲ 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 

𝑉2.
𝐶𝑆𝑃⊲𝑤𝑙,𝐶𝑆𝑃⊲𝐵  

𝐶𝑆𝑃⊲𝐶
 

𝑉3.
𝐶𝑆𝑃⊲𝐶,𝐶𝑆𝑃⊲𝐷,𝐶𝑆𝑃⊲𝐸  

𝐶𝑆𝑃⊲𝐹
 

𝑉4.
𝐶𝑆𝑃|≡𝐹  

𝐶𝑆𝑃|≡(𝐵,𝐷,𝐸)
 

𝑉5.
𝐶𝑆𝑃|≡𝐷,𝐶𝑆𝑃|≡𝐾𝑜𝑤𝑛𝑒𝑟

⟼ 𝑂𝑤𝑛𝑒𝑟

𝐶𝑆𝑃|≡𝑂𝑤𝑛𝑒𝑟⊲𝐾𝑜𝑤𝑛𝑒𝑟
−1  

When 𝐶𝑆𝑃  receives the ciphertext from 𝑂𝑤𝑛𝑒𝑟 , 𝐶𝑆𝑃  can exploit the 

information to determine the correctness. From formula 𝑉5, we can infer that our 

scheme does achieve the goal we set. By formula 𝑉5, 𝐶𝑆𝑃  believes that 𝑂𝑤𝑛𝑒𝑟 

holds the private key to create the ciphertext. 

 Verification of The User 

The correctness of user verification in the test phase is verified with the BAN logic 

as follows: 

Message 1: 𝑈𝑠𝑒𝑟 ⟶ 𝐶𝑆𝑃: 𝑇𝑤𝑗
 

𝑉1. 𝐶𝑆𝑃 ⊲ 𝑇𝑤𝑗
 

𝑉2.
𝐶𝑆𝑃|≡𝑊,𝐶𝑆𝑃|≡(𝐵,𝐶),𝐶𝑆𝑃|≡𝐾𝑈𝑠𝑒𝑟

⟼ 𝑈𝑠𝑒𝑟

𝐶𝑆𝑃|≡𝑇𝑤𝑗
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𝑉3.
𝐶𝑆𝑃|≡𝑇𝑤𝑗

𝐶𝑆𝑃|≡𝑈𝑠𝑒𝑟⊲𝐾𝑈𝑠𝑒𝑟
−1  

When 𝐶𝑆𝑃  receives the trapdoor, 𝐶𝑆𝑃  can exploit the ciphertext sent from 

𝑂𝑤𝑛𝑒𝑟 and 𝑈𝑠𝑒𝑟’s public key to determine the correctness. Formula 𝑉3, we can infer 

that our scheme achieves the goal we set for 𝑇𝑒𝑠𝑡  phase. By formula 𝑉3 , 𝐶𝑆𝑃 

believes that 𝑈𝑠𝑒𝑟 holds the private key to create the trapdoor. 

 Verification of The Ciphertext 

In this subsection, we examine the correctness of the re-encrypted ciphertext 

verification process in the decryption phase (including 𝐷𝑒𝑐1 and 𝐷𝑒𝑐2) with the 

BAN logic. The details are as follows: 

For 𝐷𝑒𝑐1: 

Message 1: 𝐶𝑆𝑃 ⟶ 𝑈𝑠𝑒𝑟: 𝐶𝑇𝑗 = (𝐵, 𝐷′, 𝐸) 

𝑉1. 𝑈𝑠𝑒𝑟 ⊲ 𝐵, 𝐷′, 𝐸 

𝑉2.
𝑈𝑠𝑒𝑟⊲(𝐵,𝐷′),𝑈𝑠𝑒𝑟⊲ 𝐾𝑈𝑠𝑒𝑟

−1

𝑈𝑠𝑒𝑟⊲𝑅
 

𝑉3.
𝑈𝑠𝑒𝑟⊲𝐸,𝑈𝑠𝑒𝑟⊲𝑅  

𝑈𝑠𝑒𝑟⊲𝑚
 

𝑉4.
𝑈𝑠𝑒𝑟⊲(𝑚,𝑅)  

𝑈𝑠𝑒𝑟⊲𝑠
 

𝑉5.
𝑈𝑠𝑒𝑟|≡(𝑠,𝐵)  

𝑈𝑠𝑒𝑟|≡(𝑅,𝑚)
 

𝑉6.
𝑈𝑠𝑒𝑟|≡𝑅  

𝑈𝑠𝑒𝑟|≡𝐷′ 

𝑉7.
𝑈𝑠𝑒𝑟|≡𝐷′

𝑈𝑠𝑒𝑟|≡𝐶𝑆𝑃⊲𝑟𝑘
 

When 𝑈𝑠𝑒𝑟 receives the ciphertext, he/she exploits all information contained in 

it to determine that the re-encrypted ciphertext is truly sent by 𝐶𝑆𝑃 and has not been 
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tampered by an attacker. By formula 𝑉7, 𝑈𝑠𝑒𝑟 believes 𝐶𝑆𝑃 holds the re-encryption 

key that can be used to re-encrypt the ciphertext, and therefore we can infer that our 

scheme achieves the goal we set for phase 𝐷𝑒𝑐1. 

For 𝐷𝑒𝑐2: 

Message 1: 𝐶𝑆𝑃 ⟶ 𝑈𝑠𝑒𝑟: 𝐶𝑇𝑗 = (𝐵, 𝐶, 𝐷′, 𝐸, 𝐹) 

𝑉1. 𝑈𝑠𝑒𝑟 ⊲ 𝐵, 𝐶, 𝐷′, 𝐸, 𝐹 

𝑉2.
𝑈𝑠𝑒𝑟⊲(𝐵,𝐷′),𝑈𝑠𝑒𝑟⊲ 𝐾𝑈𝑠𝑒𝑟

−1

𝑈𝑠𝑒𝑟⊲𝑅
 

𝑉3.
𝑈𝑠𝑒𝑟⊲𝐸,𝑈𝑠𝑒𝑟⊲𝑅  

𝑈𝑠𝑒𝑟⊲𝑚
 

𝑉4.
𝑈𝑠𝑒𝑟⊲(𝑚,𝑅)  

𝑈𝑠𝑒𝑟⊲𝑠
 

𝑉5.
𝑈𝑠𝑒𝑟|≡(𝑠,𝐵)  

𝑈𝑠𝑒𝑟|≡(𝐶,𝑅,𝑚)
 

𝑉6.
𝑈𝑠𝑒𝑟|≡(𝑅,𝑚)  

𝑈𝑠𝑒𝑟|≡(𝐷′,𝐸)
 

𝑉7.
𝑈𝑠𝑒𝑟|≡𝐷′

𝑈𝑠𝑒𝑟|≡𝐹
 

𝑉8.
𝑈𝑠𝑒𝑟|≡𝐹 

𝑈𝑠𝑒𝑟|≡𝐶𝑆𝑃⊲𝑟𝑘
 

When 𝑈𝑠𝑒𝑟 receives the ciphertext that contains the keyword, he/she exploits all 

information contained in it to determine whether the re-encrypted ciphertext sent from 

𝐶𝑆𝑃 has been tampered by an attacker. By formula 𝑉8, 𝑈𝑠𝑒𝑟 believes that 𝐶𝑆𝑃 

holds the re-encryption key for the re-encryption of the ciphertext. Therefore, we can 

infer that our scheme achieves the goal we set for phase 𝐷𝑒𝑐2. 
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Chapter 4  Key-aggregate Encryption 

Handling huge loads of data that are subject to change within every second, cloud 

storage services are facing the challenge of properly dealing with the problem of user 

legality management while making sure that the services are conveniently user-friendly. 

Ideally, the concept of attribute-based encryption (ABE) should be applied, meaning 

that data should be able to be encrypted using some specific attributes before it is 

uploaded to cloud, so that fine access control is possible. However, in a traditional 

attribute-based encryption scheme, the user typically needs to have different attribute-

based keys for the decryption of various pieces of data downloaded, which really is a 

lot of trouble. To solve this problem, the idea of key-aggregate cryptosystem (KAC) 

has been brought up. With KAC, the user gets to use one single aggregate key to decrypt 

data that match all the attributes specified by the user. In addition, in some cases of 

cloud data usage we as users might not exactly want to share our cloud data with others 

24 hours a day and for as long as it gets. Therefore, in this paper, we shall propose a 

time-bound key-aggregate encryption scheme for cloud storage, together with the 

results of some comparisons as well as correctness and security analyses we have made 

to prove the superiority of our new scheme over related works. Not only will our new 

scheme take the burden of maintaining the attribute-based keys off the user, but it will 

also provide satisfactory confidentiality and security for cloud data in a more efficient 

way. 
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4.1 Preliminaries 

Thanks to the immense advancement of recent cloud computing technologies, 

quite a number of new ways to deal with vast amounts of data have been created and 

brought into our everyday lives, cloud storage service among the rest. The appearance 

of cloud storage service has swiftly changed people’s common practice of bringing 

USB flash drives or portable hard drives or other devices around into embracing cloud 

storage space providers such as Dropbox, SkyDrive, and MEGA. Cloud storage service 

surprises every beginner with the amazing convenience and freedom of easily accessing 

their data wherever there is access to the Internet. Now clients of cloud storage services 

include not only individual people but also businesses or other kinds of organizations, 

and what is stored in cloud can range from public, totally non-sensitive data to highly 

confidential information. Therefore, thorough protection of the data trusted in cloud 

against any possible malicious access is crucial to the success of a cloud storage service 

provider. 

As cloud storage service gains its popularity, people’s choice of place to keep their 

data switches from devices right at hand to some far-away storage space you do not 

even know where it is, like Dropbox, Box.com, SugarSync, etc. To start using these 

cloud storage services, we typically provide an account and password pair. Once logged 

in, we are ready to upload our data. However, if our data is uploaded in the form of 

plaintext, then anyone at the server end will have an easy chance to obtain our data and 

make whatever malicious use of it they wish to. In order to prevent this from happening, 

before uploading, we can have our data encrypted and thus keep it incomprehensible to 

all the staff at the cloud end. Related issues may include privacy protection, 

confidentiality, etc. [10, 30, 37, 38, 50, 67]. 

With tons and tons of data stored in cloud, another major issue is how to make sure 
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that the cloud storage service user can have easy, fast access to the part or parts of data 

in need without having to download a whole warehouse of data and sorting everything 

out. To achieve fine access control, some exploit the keyword search process, and others 

use attribute-based encryption. Sahai and Waters were the first to propose the concept 

of attribute-based encryption [55]. With attribute-based encryption, the plaintext can be 

encrypted if it contains some specific attribute. Following this route, Wang et al. 

proposed a hierarchical attribute-based encryption scheme for cloud storage 

environments to make fine access control possible [66]. Unfortunately, traditional 

attribute-based encryption schemes may not be exactly user friendly and bring the right 

convenience. An example is like this: Suppose Alice encrypted some data using English, 

Chinese, mathematics, science, society, and computer as attributes respectively and 

then uploaded the data to cloud. One day, Bob wants to access the data with attributes 

English, Chinese, mathematics, and computer. First, he sends the access requirement to 

Alice. Since to each attribute there is a corresponding key, Alice then needs to respond 

to Bob with the decryption keys for attributes English, Chinese, mathematics, and 

computer respectively. This may not exactly be what Bob has in mind because now he 

has four different keys to manage. This scenario is illustrated in Figure 5. Just imagine 

if some data stored in cloud came through 1,000 different attributes. In that case, a user 

who wants to access data through 500 different attributes will have to ask the data owner 

for 500 separate keys, each corresponding to one attribute. Keeping those 500 keys is 

of course a lot of trouble. In order to solve this problem, Chu et al. proposed a new 

scheme called Key-Aggregate Cryptosystem (KAC) [19]. In Chu et al.’s scheme, Alice 

does not need to return four different keys to Bob; instead, only one aggregate key is 

generated for the collective attribute of English, Chinese, mathematics, and computer. 

With this aggregate key, Bob can decrypt the parts of data he wishes to get. This 
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scenario is illustrated in Figure 6. 

 

In addition, there are also times when Alice thinks opening all her data to Bob at 

all times may not be a good idea. That is when a time-bound aggregate key comes in. 

Since we have found no time-based aggregate key encryption mechanism proposed 

among the many previous studies related, in this paper we shall offer the very first time-

bound key-aggregate encryption scheme for cloud storage. Since by nature the cloud 

server is obviously not to be fully trusted, in our scheme, not only do we combine time-

bound key assignment together with key-aggregate encryption, but we also introduce 

the concept of proxy re-encryption. As a result, our new scheme offers better data 

Encrypt data with different attributes 

and upload to cloud 
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Chinese English Math Computer 
+ + + 

Computer 

English 
Chinese 

Math 

Cloud storage space (SkyDrive…) 

Society 

Chinese English Science Math 

Computer 

Send requirement for access to data through 

attributes English, Chinese, mathematics, and 

computer 

Figure 5 How traditional attribute-based encryption works 
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security and is much more user-friendly than its predecessors. To be more specific, the 

properties that our new scheme features are as follows: 

1. Our scheme takes the heavy burden of managing decryption keys off the user: 

In a traditional attribute-based encryption scheme, the user needs to keep 

different attribute-based decryption keys for the downloading of data 

previously uploaded by using different attributes. This task of key 

management can be a heavy load on the user. Our scheme is capable of 

relieving the user of such a burden. 

2. No tamper-resistant device is required: 

In order to resist collusion attacks, many time-bound key assignment schemes 

have to exploit the tamper-resistant devices. In our scheme, we exploit some 

public parameters instead. 

3. The confidentiality of the data is guaranteed. 

To prevent a malicious cloud server from tampering the ciphertext, we 

empower the cloud server to re-encrypt the time-bound ciphertext for the 

corresponding set of attributes. Only the qualified user can use his/her key to 

decrypt the re-encrypted ciphertext.  

4. Our time-bound key offers more flexibility: 

The data owner may or may not want to share the data with a user at all times. 

To offer this flexibility of time-bound access control, our time-bound key 

design enables the data owner to set a key for the user that gives the user 

permission to access the data desired within a certain period of time. 
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4.2 Related Works 

4.2.1 Attribute-based Encryption 

Distinct from identity-based encryption (IBE), there is a new encryption type 

called attribute-based encryption (ABE). With attribute-based encryption, the plaintext 

can be encrypted if it contains some specific attribute. Sahai and Waters were the first 

to introduce the concept of attribute-based encryption to the world [55]. Sahai and 

Waters proposed their fuzzy identity-based encryption scheme in 2005. In 2006, Goyal 

proposed a new type attribute-based encryption named Key-Policy Attribute-Based 

Encryption (KP-ABE). In KP-ABE, each private key is associated with an access 

Send requirement for access to data with attributes 

English, Chinese, mathematics, and computer 

Encrypt data with different 

attributes and upload to cloud 

Alice Bob 

English, Chinese, mathematics, and computer 

Computer 

English 
Chinese 

Math 

Cloud storage space (SkyDrive…) 

Society 

Chinese English Science Math 

Computer 

Aggregate key to Bob 

Figure 6 Key-aggregate encryption 
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structure that specifies which type of ciphertext the key can decrypt [29]. Then, in the 

next year, Bethencount et al. proposed another new attribute-based encryption scheme 

by the name of Ciphertext-Policy Attribute-Based Encryption (CP-ABE) which allows 

the user to associate the access structure with specific attributes [4]. Then, in 2008, 

Muller et al. extended the CP-ABE into their Distributed Attribute-Based Encryption 

(DABE), which supports an adjustable, unlimited number of attribute authorities and 

allows new users and authorities to join in dynamically at any time [48].  

4.2.2 Time-bound Key Assignment 

In some cases we want the user to have the freedom of accessing the data at any 

time, but in other cases we want to put some limit to it. When the access time is to be 

limited, setting a time-bound key for the user is a good idea. In 2002, Tzeng [62] 

proposed a time-bound key assignment scheme, where the user can access some certain 

data within a certain period of time specified by the time-bound key. To be more 

specific, in Tzeng’s cheme, there is a class time-bound key 𝐾𝑖,𝑡 at time t for class 𝐶𝑖. 

However, later in 2003, Yi and Ye pointed out that Tzeng's scheme was vulnerable to 

collusion attacks [75]. In 2004, Chien proposed a new time-bound hierarchical key 

management scheme based on a low-cost tamper-resistant device [17]. Chien's scheme 

uses the hash function instead of public key cryptography and thus reduces the 

computation cost effectively. Unfortunately, in 2005, Yi found that Chien's scheme was 

vulnerable to collusion attacks [74]. In order to provide protection against collusion 

attacks, in 2008, Bertino et al. proposed a new efficient time-bound hierarchical key 

management scheme that makes use of tamper-resistant devices [3]. Then, in 2009, Sun 

et al. offered proof that Bertino et al.'s scheme is indeed robust against collusion attacks 

[60]. More recently in 2012, Shen et al. proposed a time-bound hierarchical access 
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control and key management scheme for the multicast system that protects the 

confidential multicast data [58]. In the meantime, Chen et al. proposed an efficient time-

bound hierarchical key management scheme that can do without a tamper-resistant 

device [15].  

4.2.3 The Encryption Mechanism for Cloud Storage 

In 2010, Wang et al. proposed a hierarchical attribute-based encryption scheme for 

fine-grained access control in cloud storage. Their scheme combines a hierarchical 

attribute-based encryption system and a ciphertext-policy attribute-based encryption 

system, resulting in high performance, fine-grained access control, and collusion attack 

resistance [66]. Yu et al. exploited ciphertext-policy attribute-based encryption and 

added in proxy re-encryption to construct the first scheme that simultaneously achieves 

fine access control, scalability, and data confidentiality in cloud computing [76]. In 

2011, Huang et al. proposed an efficient identity-based key management mechanism 

for configurable hierarchical cloud environments that gives better performance at lower 

communication cost on encryption [32]. Due to the heavy loads of data kept in cloud 

storage, Liu et al. pointed out some problems with Liu et al.'s efficient privacy 

preserving keyword search scheme [43] and proposed a new secure and privacy 

preserving keyword search scheme for cloud storage services in 2012 [44]. In the same 

year, Koo et al. exploited ABE and proposed a new searchable encryption scheme 

which provides efficient data retrieval for cloud storage [37]. In 2013, Fan and Hiang 

proposed a variant of symmetric predicate encryption for cloud environment that 

provides controllable privacy preserving search functionalities [23]. Chen et al. 

proposed a new scheme to support data dynamics for remote data possession checking 

in cloud environment by exploiting the Merkle hash tree [16]. Liu et al. proposed a new 
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secure data sharing scheme by the name of Mona, where the dynamic group design in 

cloud environment is made possible by leveraging the group signature and employing 

some dynamic broadcast encryption techniques [46]. To take care of in intra-domain 

and inter-domain query requirements, Han et al. proposed an identity-based proxy re-

encryption scheme suitable for cloud computing applications [23]. Then Wang et al. 

proposed a privacy-preserving public auditing scheme for a secure cloud storage system 

where the third-party auditor (TPA) would not learn anything about the data contents 

stored in cloud during the auditing process [64]. In 2014, in order to make fine access 

control possible over searchable encrypted data, Li et al. proposed a new scheme for 

hybrid clouds that offers practical keyword search where a private cloud is introduced 

as an access interface between the user and the public cloud [40]. Meanwhile, Liu et al. 

combined the concepts of attribute-based encryption and time-based access control to 

build a time-based proxy re-encryption scheme for data sharing in cloud environment 

that achieves scalable user revocation and fine access control [45]. 

4.3 Time-bound Key-aggregate Encryption 

Before illustrating our scheme, we will go over some basic principles of bilinear 

pairing [7, 34, 35] and give some complexity assumptions. Then we will get into the 

details of our time-bound key-aggregate encryption scheme. 

4.3.1 Bilinear Pairing  

Let 𝔾1 be a cyclic additive group with prime order 𝑞, and let 𝔾2 be a cyclic 

multiplicative group with prime order 𝑞, and 𝑝 is the generator of group 𝔾1. With 

𝑥, 𝑦 ∈ ℤ𝑞 , we have the bilinear map 𝑒: 𝔾1 × 𝔾1 → 𝔾2  that satisfies the following 

requirements: 
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 Bilinearity: For all 𝑥, 𝑦 ∈ ℤ𝑞  and 𝑃, 𝑄 ∈ 𝔾1 , 𝑒(𝑃𝑥 , 𝑄𝑦) = 𝑒(𝑃, 𝑄)𝑥𝑦 =

𝑒(𝑃𝑦 , 𝑄𝑥). 

Sometimes the property of bilinearity can be alternatively expressed as 

𝑒(𝑥𝑃, 𝑦𝑄) = 𝑒(𝑃, 𝑄)𝑥𝑦 = 𝑒(𝑦𝑃, 𝑥𝑄). 

 Computability: For any 𝑃, 𝑄 ∈ 𝔾1, tere always exists an efficient algorithm 

to compute 𝑒(𝑃, 𝑄) ∈ 𝔾2. 

 Non-degeneration: 𝑒(𝑃, 𝑄) ≠ 1. 

4.3.2 Complexity Assumption 

The security of our new scheme is based on the following complexity assumptions: 

 Discrete Logarithm Problem (DLP) 

Given two elements 𝑃 and 𝑄 in 𝔾1, it is extremely difficult to find 𝑛 ∈ ℤ𝑞  

such that 𝑃 = 𝑛𝑄 if 𝑛 exists. 

 Computation Diffie-Hellman Problem (CDHP) 

Given 𝑃, 𝑥𝑃, 𝑦𝑃 for 𝑥, 𝑦 ∈ ℤ𝑞 , it is extremely difficult to compute 𝑥𝑦𝑃. 

 Bilinear Diffie-Hellman Problem (BDHP) 

Given 𝑃, 𝑃𝑥 , 𝑃𝑦, 𝑃𝑧  for 𝑥, 𝑦, 𝑧 ∈ ℤ𝑞 , it is extremely difficult to compute 

𝑒(𝑃, 𝑃)𝑥𝑦𝑧 ∈ 𝔾2. 

4.3.3 The Proposed Scheme 

In this subsection, we will propose our time-bound key-aggregate encryption 

scheme inspired by Boneh et al. [8] and Chu et al. [19]. First, we will illustrate the 
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architecture of our scheme, and then we will give the details of each phase in our 

scheme. 

To begin with, the participants in our scheme include the cloud storage provider 

(CSP), the data owner, and the user. The three parties behave as follows: 

 Cloud storage provider (CSP): CSP needs to store the ciphertext and accept 

requirements sent from the user. CSP also has the ability of re-encrypting the 

time-bound ciphertext. 

 Data owner: The data owner needs to encrypt the ciphertext and set a 

corresponding class to each piece of it. The data owner also generates a time-

bound aggregate key for the user. 

 User: The user needs to send a requirement to the data owner in order to get 

his/her key, and then send another requirement to CSP to get the re-encrypted 

ciphertext. The user then uses the time-bound aggregate key given by the data 

owner to decrypt the ciphertext received.   

The notations we will use throughout the presentation of our new scheme are listed 

in Table 7. 
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Table 7 Notations in time-bound key-aggregate encryption 

Notations Descriptions 

𝑝 

𝐺, 𝐺𝑇 

�̂� 

𝑔 

𝛼, 𝛽, 𝑎, 𝑏 

𝑛 

𝑒𝑘 

𝑧 

A prime order 

Bilinear groups of prime order 𝑝 

Bilinear map �̂�: 𝐺 × 𝐺 → 𝐺𝑇 

A generator of 𝐺 

The secret random numbers, 𝛼, 𝛽, 𝑎, 𝑏 ∈ 𝑍𝑝 

The maximum number of ciphertext classes 

A secret value 

The time line,  𝑧 < 𝑝 

𝑇 

𝑡 

𝑡1 

𝑡2 

𝑥 

𝑦 

The maximum continuous subscription time 

Current time 

The initiate time of register time 

The termination time of register time 

The past time 

The remaining time 

We set 𝜆 as the total of the valid time for the user. This way, when the user 

subscribes for a time period [𝑡1, 𝑡2], the variables 𝑇, 𝜆, 𝑥, 𝑦, 𝑡, 𝑡1, and 𝑡2 satisfy the 

following description: 

𝑡1 + 𝑥 = 𝑡 = 𝑡2 − 𝑦,  𝑥 + 𝑦 = 𝜆,  𝑡2 − 𝑡1 = 𝜆 ≤ 𝑇 

𝑡1 𝑡2 

𝜆 

𝑥 𝑦 𝑡 

Figure 7 The relationship of 𝑻, 𝝀, 𝒙, 𝒚, 𝒕, 𝒕𝟏, and 𝒕𝟐 

http://cdict.net/?w=current
http://cdict.net/?w=termination
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There are six algorithms in our scheme as follows: 

 SystemSetup: Set 𝑔𝑖 = 𝑔𝛼𝑖
∈ 𝐺  for 𝑖 = 1, … , 𝑛,  𝑛 + 2,  … ,2𝑛 . Then 

compute 𝑇 sets of public parameters 𝐵 = {𝐵1,  𝐵2, … , 𝐵𝑇}, where each set 

𝐵𝑘 includes 𝑘 + 1 keys. These 𝑘 + 1 keys as a whole are called 𝐷𝑘,𝑢 =

𝛼 + 𝑎𝑢𝑏𝑘−𝑢 , ∀𝑢 ∈ [0, 𝑘],  ∀𝑘 ∈ [0, 𝑡], where 𝑢  and 𝑘  are the past time 

and the total time, respectively. Now we have the system parameters 

𝑝𝑎𝑟𝑎𝑚 = (𝐵, 𝑔,  𝑔1, … , 𝑔𝑛 ,  𝑔𝑛+2,  … ,  𝑔2𝑛 ,  𝑒𝑘𝑔, 𝑔𝛼). 

Notice that the relationship of 𝐵, 𝐵𝑘 and 𝐷𝑘,𝑢 can be described as follows: 

Assume 𝑇 = 4, there exist 𝐵 = {𝐵1,  𝐵2,  𝐵3,  𝐵4}, and each 𝐵𝑘  includes 

𝑘 + 1 keys: 

𝐵1 = {𝐷1,0, 𝐷1,1} 

      = {𝛼 + 𝑎0𝑏1, 𝛼 + 𝑎1𝑏0} 

𝐵2 = {𝐷2,0, 𝐷2,1, 𝐷2,2} 

      = {𝛼 + 𝑎0𝑏2, 𝛼 + 𝑎1𝑏1, 𝛼 + 𝑎0𝑏2} 

𝐵3 = {𝐷3,0, 𝐷3,1, 𝐷3,2, 𝐷3,3} 

      = {𝛼 + 𝑎0𝑏3, 𝛼 + 𝑎1𝑏2, 𝛼 + 𝑎2𝑏1, 𝛼 + 𝑎3𝑏0} 

𝐵4 = {𝐷4,0, 𝐷4,1, 𝐷4,2, 𝐷4,3, 𝐷4,4} 

      = {𝛼 + 𝑎0𝑏4, 𝛼 + 𝑎1𝑏3, 𝛼 + 𝑎2𝑏2, 𝛼 + 𝑎3𝑏1, 𝛼 + 𝑎4𝑏0} 

 KeyGen: Pick 𝛾 ∈𝑅 𝑍𝑝 , then compute the public key 𝑝𝑘 = 𝜐 = 𝑔𝛾  and 

master-secret key 𝑚𝑘 = 𝛾. 

 Encrypt: The data owner encrypts the message and sets a corresponding class 

to each ciphertext. For a message 𝑚𝑖 ∈ 𝐺𝑇  and an index 𝑖 ∈ {1, … , 𝑛} , 
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randomly choose 𝛽 ∈ 𝑍𝑝 , and compute the ciphertext 𝐶𝑖 =

(𝑐1,  𝑐2,  𝑐3, 𝑐4) = (𝑔𝛼𝛽, 𝑔𝛽,  (𝜐𝑔𝑖)
𝛽,  𝑚𝑖 ∙ �̂�(𝑔1, 𝑔𝑛)𝛽). 

 Extract: Upon receiving the requirement from the user, the data owner 

generates a time-bound aggregate key for the user. For the set 𝑆 of indices 

𝑗 ’s the aggregate key can be computed by 𝐾𝑆 = 𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2 ∙

∏ 𝑔𝑛+1−𝑗
𝛾

𝑗∈𝑆 . After computing 𝐾𝑆, the data owner sends it back to the user. 

With this key, the user can decrypt the ciphertext desired. 

 Re-encryption: Upon receiving the requirement from the user, CSP generates 

a new time-bound ciphertext for the user. CSP needs to re-encrypt the stored 

ciphertext. CSP computes 𝑐4
′ = 𝑐4/�̂�(𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖

𝛾
𝑗∈𝑆,𝑗≠𝑖 , 𝑐2)

𝑎𝑡𝑏𝑧−𝑡𝑒𝑘
∙

�̂�(𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑐1)
𝑎𝑡1𝑏𝑧−𝑡2𝑒𝑘

 then returns 𝐶𝑖
′ = (𝑐1,  𝑐2,  𝑐3, 𝑐4

′ ) to 

the user as re-encrypted ciphertext. 

 Decrypt: If the user decrypts the ciphertext in valid time, the user can use 𝐾𝑆 

to decrypt the re-encrypted ciphertext by computing 𝑚𝑖 = 𝑐4
′ ∙ �̂�(𝐾𝑆 ∙

∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 ,  𝑐2)
𝐷𝑘,𝑢

 ∙ �̂�(𝑔𝑛+1, 𝑐2)𝐷𝑘,𝑢/�̂�(∏ 𝑔𝑛+1−𝑗𝑗∈𝑆 ,  𝑐3)
𝐷𝑘,𝑢

∙

�̂�(𝑔𝑛+1,  𝑐2). Before computing 𝑚𝑖, the user needs to find the corresponding 

𝐵𝑘 in 𝐵 to obtain 𝐷𝑘,𝑢 = 𝛼 + 𝑎𝑢𝑏𝑘−𝑢 in order to decrypt the ciphertext. 
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4.4 Security and Performance Analysis 

In this section, let’s confirm the correctness of our scheme, examine how it 

compares with related schemes in terms of functions, and then check the security 

against some possible attacks. For the correctness analysis, we especially checked the 

correctness of the decryption algorithm, and the BAN logic was also employed to check 

the whole scheme. 

 

Figure 8 Time-bound key-aggregate encryption scheme 
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4.4.1 Correctness Analysis 

4.4.1.1 Correctness of Decryption Algorithm 

In the decryption algorithm, the user can use his/her time-bound key to recover 

𝑚𝑖. The correctness of this algorithm can be confirmed as follows: 

         𝑐4
′ ∙

�̂�(𝐾𝑆 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 ,  𝑐2)
𝐷𝑘,𝑢

∙ �̂�(𝑔𝑛+1, 𝑐2)𝐷𝑘,𝑢  

�̂�(∏ 𝑔𝑛+1−𝑗𝑗∈𝑆 ,  𝑐3)
𝐷𝑘,𝑢

∙ �̂�(𝑔𝑛+1,  𝑐2)
 

= 𝑐4
′

∙
�̂� ((𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2 ∙ ∏ 𝑔𝑛+1−𝑗

𝛾
𝑗∈𝑆 ) ∙ ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 ,  𝑔𝛽)

𝐷𝑘,𝑢

∙ �̂�(𝑔𝑛+1, 𝑔𝛽)
𝐷𝑘,𝑢

 

�̂�(∏ 𝑔𝑛+1−𝑗𝑗∈𝑆 ,  (𝜐𝑔𝑖)𝛽)
𝐷𝑘,𝑢

∙ �̂�(𝑔𝑛+1,  𝑔𝛽)
 

= 𝑐4
′ ∙

�̂�((𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2)∙∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝐷𝑘,𝑢

∙�̂�(∏ 𝑔𝑛+1−𝑗
𝛾

𝑗∈𝑆 ∙∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝐷𝑘,𝑢

∙�̂�(𝑔𝑛+1,𝑔𝛽)
𝐷𝑘,𝑢  

�̂�(∏ 𝑔𝑛+1−𝑗𝑗∈𝑆 , (𝜐𝑔𝑖)𝛽)
𝐷𝑘,𝑢∙�̂�(𝑔𝑛+1, 𝑔𝛽)

  

= 𝑐4
′ ∙

�̂�(∏ 𝑔𝑛+1−𝑗
𝛾

𝑗∈𝑆 , 𝑔𝛽)
𝐷𝑘,𝑢

∙�̂�(∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝐷𝑘,𝑢

∙�̂�((𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2)∙∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝐷𝑘,𝑢

∙�̂�(𝑔𝑛+1,𝑔𝛽)
𝐷𝑘,𝑢  

�̂�(∏ 𝑔𝑛+1−𝑗𝑗∈𝑆 , (𝑔𝛾)𝛽)
𝐷𝑘,𝑢∙�̂�(∏ 𝑔𝑛+1−𝑗𝑗∈𝑆 , 𝑔

𝑖
𝛽

)
𝐷𝑘,𝑢

∙�̂�(𝑔𝑛+1, 𝑔𝛽)

 = 𝑐4
′ ∙

(
�̂�(∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆 , 𝑔𝛽)

𝐷𝑘,𝑢
∙�̂�((𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2)∙∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)

𝐷𝑘,𝑢
∙�̂�(𝑔𝑛+1,𝑔𝛽)

𝐷𝑘,𝑢

�̂�(𝑔𝑛+1,𝑔𝛽)
𝐷𝑘,𝑢

)

�̂�(∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆 , 𝑔𝛽)
𝐷𝑘,𝑢∙�̂�(𝑔𝑛+1, 𝑔𝛽)

  

= 𝑚𝑖

∙
�̂�(𝑔1, 𝑔𝑛)𝛽

�̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝑎𝑡𝑏𝑧−𝑡𝑒𝑘

∙ �̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛼𝛽)
𝑎𝑡1𝑏𝑧−𝑡2𝑒𝑘

 

∙
�̂� ((𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2 ) ∙ ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 ,  𝑔𝛽)

𝐷𝑘,𝑢

�̂�(𝑔𝑛+1, 𝑔𝛽)
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= 𝑚𝑖

∙
�̂� ((𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2) ∙ ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 ,  𝑔𝛽(𝛼+𝑎𝑢𝑏𝑘−𝑢))

 

�̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝑎𝑡𝑏𝑧−𝑡𝑒𝑘

∙ �̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛼𝛽)
𝑎𝑡1𝑏𝑧−𝑡2𝑒𝑘

 

 

= 𝑚𝑖

∙
�̂� ((𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2 ) ∙ ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛼𝛽) ∙ �̂� ((𝑒𝑘𝑔𝛾𝑎𝑡1𝑏𝑧−𝑡2) ∙ ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽𝑎𝑢𝑏𝑘−𝑢

)
  

�̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝑎𝑡𝑏𝑧−𝑡𝑒𝑘

∙ �̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛼𝛽)
𝑎𝑡1𝑏𝑧−𝑡2𝑒𝑘

 

 

= 𝑚𝑖

∙
�̂�(𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖

𝛾
𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛼𝛽)

𝑒𝑘𝑎𝑡1𝑏𝑧−𝑡2

∙ �̂�(𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
(𝑒𝑘𝑎𝑡1𝑏𝑧−𝑡2)(𝑎𝑢𝑏𝑘−𝑢)

  

�̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝑎𝑡𝑏𝑧−𝑡𝑒𝑘

∙ �̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛼𝛽)
𝑎𝑡1𝑏𝑧−𝑡2𝑒𝑘

 

 

= 𝑚𝑖

∙
�̂�(𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖

𝛾
𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛼𝛽)

𝑒𝑘𝑎𝑡1𝑏𝑧−𝑡2

∙ �̂�(𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝑎𝑡𝑏𝑧−𝑡𝑒𝑘

  

�̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛽)
𝑎𝑡𝑏𝑧−𝑡𝑒𝑘

∙ �̂� (𝑔 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖
𝛾

𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝛼𝛽)
𝑎𝑡1𝑏𝑧−𝑡2𝑒𝑘

 

 

= 𝑚𝑖 

Note that according to the relationship of 𝑇, 𝜆, 𝑥, 𝑦, 𝑡, 𝑡1, and 𝑡2, we can get 𝑡 =

𝑡2 − 𝑦. Consequently, we can derive 𝑎(𝑡1+𝑢)𝑏(𝑧−𝑡2+𝑘−𝑢) = 𝑎𝑡𝑏(𝑧−𝑡2+𝑦) = 𝑎𝑡𝑏𝑧−𝑡. 

4.4.1.2 BAN Logic Check 

The BAN logic [11, 72] is a well-accepted method to analyze the correctness of 

cryptographic protocols. To apply the BAN logic, we have to define some notations, 

goals and assumptions of our scheme. 

 Notations 

Here are the syntax and notations of the BAN logic. 𝐴 and 𝐵 are the specific 

participators, and 𝑋 is the formula (statement). There are some rules as follows [11, 

72]: 
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15. 𝐴|≡𝑋 means 𝐴 believes the formula 𝑋 is ture. 

16. 𝐴|≡ 𝐵 means 𝐴 believes 𝐵’s action. 

17. 𝐴|⟹𝑋 means 𝐴 has complete control over the formula 𝑋. 

18. 𝐴 ⊲ 𝑋 means 𝐴 holds or sees the formula 𝑋. 

19. #(𝑋) means the formula 𝑋 is fresh. 

20. 𝐾𝐴
⟼

𝐴 means 𝐾 is the public key for 𝐴 and 𝐾𝐴
−1 is the private key for A. 

21. 
𝑅𝑢𝑙𝑒 1

𝑅𝑢𝑙𝑒 2
 means 𝑅𝑢𝑙𝑒 2 can be derived from 𝑅𝑢𝑙𝑒 1. 

 

 Goals 

There are three roles interacting in our scheme, namely the data owner (𝑂𝑤𝑛𝑒𝑟), 

the cloud service provider (𝐶𝑆𝑃) and the user (𝑈𝑠𝑒𝑟). In the language of the BAN logic, 

our scheme is to achieve the two goals as follows:  

𝐺1. 𝑈𝑠𝑒𝑟|≡𝐾𝑈𝑠𝑒𝑟
−1  

𝐺2. 𝑈𝑠𝑒𝑟|≡𝑚𝑖 

Because the user needs to use his/her secret key to decrypt 𝐶𝑖
′ to recover 𝑚𝑖, in 

𝐺1 the user should believe that the decryption key is truly sent from the data owner. 

Then, as 𝐺2 indicates, the user should believe that the 𝑚𝑖 that he/she decrypts by 

using his/her key is true. 

 Assumptions 

With the goals set, the assumptions used to analyze our scheme can be stated as 

follows: 
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𝐴1. 𝑂𝑤𝑛𝑒𝑟|⟹𝐾𝑂𝑤𝑛𝑒𝑟
−1  

𝐴2. 𝑈𝑠𝑒𝑟|≡𝑂𝑤𝑛𝑒𝑟 ⊲ 𝐾𝑂𝑤𝑛𝑒𝑟
−1  

𝐴3. 𝑈𝑠𝑒𝑟 ⊲ 𝐾𝑈𝑠𝑒𝑟
−1  

𝐴4. 𝑈𝑠𝑒𝑟|≡𝐵𝑖 

Since the set 𝐵  is protected by the secret values 𝛼, 𝑎, and 𝑏 , the user should 

believe that 𝐵 cannot be tampered by an attacker. 

 

 Correctness of Scheme 

Now we are ready to use the BAN logic to confirm the correctness of our scheme: 

Message 1: 𝐶𝑆𝑃 ⟶ 𝑈𝑠𝑒𝑟: 𝐶𝑖
′ = (𝑐1,  𝑐2,  𝑐3, 𝑐4

′ ) 

𝑉1. 𝑈𝑠𝑒𝑟 ⊲ 𝐶𝑖
′ 

𝑉2. 
𝑈𝑠𝑒𝑟⊲𝐶𝑖

′ ,𝐾𝑈𝑠𝑒𝑟
−1 ,𝑈𝑠𝑒𝑟|≡𝐵𝑖 

𝑈𝑠𝑒𝑟⊲𝑚𝑖

 

𝑉3. 
𝑈𝑠𝑒𝑟|≡𝑂𝑤𝑛𝑒𝑟⊲𝐾𝑂𝑤𝑛𝑒𝑟

−1 ,𝑈𝑠𝑒𝑟⊲𝑚𝑖

𝑈𝑠𝑒𝑟|≡𝐾𝑈𝑠𝑒𝑟
−1  

𝑉4. 
𝑈𝑠𝑒𝑟|≡𝐾𝑈𝑠𝑒𝑟

−1

𝑈𝑠𝑒𝑟|≡𝑚𝑖 
 

When CSP sends 𝐶𝑖
′ = (𝑐1,  𝑐2,  𝑐3, 𝑐4

′ )  to the user, the user can hold 𝐶𝑖
′ =

(𝑐1,  𝑐2,  𝑐3, 𝑐4
′ ). In 𝑉2, there are 𝑇 sets in 𝐵, and not only does the user believe 𝐵𝑖 

but he/she also holds 𝐶𝑖
′ and 𝐾𝑠. So, he/she can recover 𝑚𝑖 by exploiting 𝐵, 𝐶𝑖

′, and 

𝐾𝑠. Since 𝐾𝑠 is generated by using the data owner’s master-secret key, the user can use 

𝐾𝑠 to recover 𝑚𝑖 and therefore can believe that 𝐾𝑠 is efficacious. Then, since 𝑚𝑖 is 

obtained through the decryption process using the key 𝐾𝑠, the user believes that 𝑚𝑖 is 

what he/she wishes to obtain. By formulas 𝑉3 and 𝑉4, the user believes 𝐾𝑠 and 𝑚𝑖, 

and so the goals of our scheme are achieved. 
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4.4.2 Comparisons 

In this subsection, we shall compare our new scheme with Han et al.’s [30], Koo 

et al.’s [37], Li et al.’s [40], Liu et al.’s [45], and Chu et al.'s [19] scheme. In our table 

of comparison results, namely Table 2, the five terms AttEn, Time-bound, KeyAgg, 

Re-encrypt, and Confidentiality are used to indicate attribute-based encryption, time-

bound key assignment, key-aggregate encryption, proxy re-encryption, and data 

confidentiality, respectively. 

Data confidentiality is an important requirement any encryption scheme applied 

in any field should satisfy. In Table 8 we gladly see that all of the schemes satisfy this 

requirement. As for attribute-based encryption, it helps in data categorization and is the 

key to fine access control. Unfortunately, since Han et al.'s scheme is based on identity-

based encryption, it cannot provide fine access control. Among the schemes compared, 

Liu et al.’s scheme, with attribute-based encryption and time-bound key assignment 

combined, satisfies four of the five requirements. However, due to the lack of key 

aggregation, in Liu et al.’s scheme, the user needs more than one key for different 

attributes. As Table 8 reveals, our scheme is the only scheme to satisfy all five 

requirements. 
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Table 8 Comparison results among related works 

 AttEn Time-bound KeyAgg Re-encrypt Confidentiality 

Han et al. × × × ○ ○ 

Koo et al. ○ × × × ○ 

Li et al. ○ × × × ○ 

Liu et al. ○ ○ × ○ ○ 

Chu et al. ○ × ○ × ○ 

Our scheme ○ ○ ○ ○ ○ 

AttEn : attribute-based encryption 

Time-bound : time-bound key assignment 

KeyAgg : key-aggregate encryption 

Re-encrypt : proxy re-encryption 

Confidentiality : data confidentiality 

 

 

4.4.3 Security Analysis 

In general, there are two ways to analyze the security of a scheme: formal analysis 

and heuristic analysis. In this study, we followed the route of heuristic analysis. 

1. System security is ensured by protected α. 

In our scheme, α plays an important role. If α leaked out, the system would 

be exposed to danger. To keep an attacker from obtaining α  through 

analyzing the public parameter 𝐷𝑘,𝑢, we make 𝐷𝑘,𝑢 = 𝛼 + 𝑎𝑢𝑏𝑘−𝑢 so any 

attempt of exploiting the Euclidean algorithm will be in vain. 
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2. Proxy re-encryption ensures data confidentiality. 

CSP has no way to obtain 𝑚𝑖 by analyzing the ciphertext. CSP needs to use 

a time-based parameter (𝑎𝑡𝑏𝑧−𝑡) to re-encrypt 𝐶𝑖 before sending it to the 

user.  

3. Only the legitimate user can decrypt the re-encrypted ciphertext. 

Since CSP has had the ciphertext re-encrypted by using the time-based 

parameter (𝑎𝑡𝑏𝑧−𝑡), only the legitimate user with the right aggregate key can 

decrypt the ciphertext, and this can only be done within the time interval 

[𝑡1, 𝑡2] because the aggregate key expires after the time limit. 

4. CDHP and BDHP offer protection against collusion attacks. 

If some dishonest users hold the same attribute but different prescription of 

time-bound aggregate key or the same prescription but different attribute of 

time-bound aggregate key, they do not have the ability to exploit each key to 

obtain the data owner’s master secret key 𝑚𝑘 = 𝛾  and time parameter 

𝑎𝑡1 𝑏𝑧−𝑡2 𝑒𝑘 because of the protection of CDHP and BDHP. Therefore, no 

user can decrypt more than the data they are entitled to. 

5.  The user can verify whether or not the ciphertext has been tampered. 

The moment the user successfully recovers the ciphertext with his/her time-

bound aggregate key, the time-bound ciphertext proves to be the real thing. 

This is because only the real CSP has the ability to re-encrypt the ciphertext 

within the time limit.  
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6. The time parameter offers protection against the ciphertext-only attack 

Since each time-bound ciphertext has a unique time parameter 𝑎𝑡1𝑏𝑧−𝑡2 𝑒𝑘, 

there is no way an attacker can analyze the ciphertext to get the key or the 

plaintext. 
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Chapter 5  Conclusions 

In this study, we proposed three scheme for cloud storage service. In Chapter 2, 

Since Boneh et al. offered their concept of public key encryption with keyword search 

(PEKS), many researchers have extended it to various PEKS schemes such as the secure 

channel-free public key encryption scheme with keyword search (SCF-PEKS), the 

efficient privacy-preserving keyword search scheme (EPPKS), the trapdoor-

indistinguishable public key encryption scheme with keyword search (TI-PEKS) and 

so on. We have proposed a secure trapdoor-indistinguishable public key encryption 

scheme with keyword search. Using a public channel, the proposed scheme is capable 

of keeping the CSP from being tricked by an attacker sending in fake ciphertext. 

In Chapter 3, we have presented a searchable hierarchical conditional proxy re-

encryption scheme for cloud storage services. Not only does our new scheme support 

hierarchical proxy re-encryption but it also allows CSP to do keyword searching on the 

encrypted data. If a new keyword is added, our scheme can exploit the current re-

encryption key to generate a new re-encryption key for the newly added keyword. The 

correctness of our new scheme has been proven by a BAN logic examination. 

Compared with similar schemes, our scheme shows superiority in terms of function, 

performance, and security. So far, quite a number of new schemes including ours can 

support the generation of new re-encryption keys for when new keywords are added. In 

the future, we hope to develop a new re-encryption key that can handle keyword 

reduction. 

In Chapter 4, we have proposed the first time-bound key-aggregate encryption 

scheme for cloud storage. With our scheme, the data owner can finely adjust the user’s 

range and time of data access. In addition, our scheme is very user-friendly because the 
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user only has to keep an aggregate key. Our correctness check, feature comparison, and 

security analysis have also shown the superiority of our scheme over related works. 
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